Universality Classes in Coarsening

Benjamin P. Vollmayr-Lee Bucknell University, USA

19 May 2006

Coarsening Introduction

Theoretical Picture

Asymptotic Defect Trajectory Analysis

Domain Morphology Universality Conjecture

Summary and Outlook

is a nonequilibrium relaxational process in which the characteristic length scale grows with time.

Many examples in nature:

- binary alloys
- polycrystals
- magnetic domains
- binary fluids
- epitaxy
- salad dressing

- polymer blends
- soap froths
- colloids
- liquid crystals
- faceted surfaces
- ▶ and more . . .

Phase Ordering Dynamics (binary alloys, polymer blends)

- Rapid quench into the forbidden region of a phase diagram
- system responds locally by equilibrating into one of the two phases
- leads to equilibrated domains separated by costly interface
- dissipative dynamics gives coarsening

2D Dry Soap Froth

Glazier, Gross, and Stavans, Phys. Rev. A 36, 306 (1987).

3D Wet Soap Froth

Magnetic Resonance Imaging

Gonata *et al.*, *Phys. Rev. Lett.* **75**, 573 (1995).

(a) Colloidal Suspension and (b) Polymer Solution

Tanaka, Nishikawa, and Koyama, J. Phys. Cond. Matt. 17, L143 (2005).

Homoepitaxial Islands

Cu on a Cu(100) surface

Pai et al., Phys. Rev. Lett. 79, 3210 (1997).

Random Copolymers – PEH/PEB

Shimizu et al., Polymer 45, 7061 (2004).

Requirements:

 \blacktriangleright Excess free energy stored in stable, local defects (e.g., domain walls): $F-F_{eq}\propto\rho_{\rm def}$

$$\blacktriangleright \mbox{ Dissipation: } \frac{dF}{dt} < 0 \quad \Rightarrow \quad \frac{d\rho_{\rm def}}{dt} < 0$$

Result: growing characteristic length L(t)

Sharp defects defect size ξ fixed, so for asymptotically late times $L(t) \gg \xi \Leftrightarrow$ sharp-defect limit.

Self-similarity domain structure statistically invariant when rescaled by L(t).

Implies correlation function scaling $C(\mathbf{r},t) = f(\mathbf{r}/L(t))$

Power law growth characteristic scale $L \sim t^{\alpha}$

Universality exponent α determined by only a few general features: conservation laws and nature of order parameter

Coarsening Models I: Kinetic Ising Models

Lattice of spins $s_i=\pm 1$, with hamiltonian $H=-J\sum_{\langle ij
angle}s_is_j$

Spins initially random $(T_i = \infty)$. Quench at time t = 0 to $T < T_c$.

Glauber Dynamics

► spins flip with probability determined by energy ⇒ nonconserved order parameter.

Coarsening Models I: Kinetic Ising Models

Lattice of spins $s_i=\pm 1$, with hamiltonian $H=-J\sum_{\langle ij
angle}s_is_j$

Spins initially random $(T_i = \infty)$. Quench at time t = 0 to $T < T_c$.

Glauber Dynamics

► spins flip with probability determined by energy ⇒ nonconserved order parameter.

Kawasaki Dynamics

- neighboring spins exchanged \Rightarrow conserved OP.
- volume fraction ϵ additional parameter
- appropriate for binary mixtures: $\uparrow = Fe$, $\downarrow = AI$.

Kinetic Ising Models

Glauber (spin flip): nonconserved $OP \rightarrow L \sim t^{1/2}$

Kawasaki (spin exchange): conserved OP $\rightarrow L \sim t^{1/3}$

Coarsening Models II: Phase Field Models

Field $\phi(\mathbf{x}, t)$ describes local concentration. Free energy functional:

$$F[\phi] = \int d^d x \left\{ \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right\}$$

Allen-Cahn equation

Nonconserved OP:
$$\frac{\partial \phi}{\partial t} = -\frac{\delta F}{\delta \phi} \Rightarrow \frac{\partial \phi}{\partial t} = \nabla^2 \phi - V'(\phi)$$

Coarsening Models II: Phase Field Models

Field $\phi(\mathbf{x}, t)$ describes local concentration. Free energy functional:

$$F[\phi] = \int d^d x \left\{ \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right\}$$

Allen-Cahn equation

Nonconserved OP:
$$\frac{\partial \phi}{\partial t} = -\frac{\delta F}{\delta \phi} \Rightarrow \frac{\partial \phi}{\partial t} = \nabla^2 \phi - V'(\phi)$$

Cahn-Hilliard equation

Conserved OP:
$$\frac{\partial \phi}{\partial t} = -\nabla \cdot \mathbf{J}$$
 and $\mathbf{J} = -\nabla \frac{\delta F}{\delta \phi}$
 $\Rightarrow \frac{\partial \phi}{\partial t} = -\nabla^2 [\nabla^2 \phi - V'(\phi)]$

Phase Field Models

Allen-Cahn eq: nonconserved $OP \rightarrow L \sim t^{1/2}$

Cahn-Hilliard eq: conserved $OP \rightarrow L \sim t^{1/3}$

Universality?

Glauber

$$L \sim t^{1/3}$$

Allen-Cahn

Cahn-Hilliard

Coarsening Introduction

Theoretical Picture

Asymptotic Defect Trajectory Analysis

Domain Morphology Universality Conjecture

Summary and Outlook

Theoretical Challenge

- Systems generically evolve into a self-similar scaling state with universal power law growth. This demands explanation!
- Characterizing this asymptotic scaling state, i.e. finding universality classes, a starting point for analysis of real systems.

Theoretical Challenge

- Systems generically evolve into a self-similar scaling state with universal power law growth. This demands explanation!
- Characterizing this asymptotic scaling state, i.e. finding universality classes, a starting point for analysis of real systems.

Renormalization Group Scenario

- Critical-like behavior suggests a dynamical RG fixed point controlling the asymptotic dynamics.
- ▶ Believed to be a T = 0 fixed point based on irrelevance of Langevin additive noise (∝ √T) for phase field models.
- ▶ Not (yet) tractable a strong-coupling fixed point.

How do we proceed?

Lifshitz-Slyozov Theory ('58)

- ▶ Exact, nontrivial solution of conserved OP coarsening in dilute $\epsilon \rightarrow 0$ limit (isolated droplets) for all $d \ge 2$.
- Derives scaling state, demonstrates its universality.
- Original prediction of $L \sim t^{1/3}$ exponent.

Lifshitz-Slyozov Theory ('58)

- ▶ Exact, nontrivial solution of conserved OP coarsening in dilute $\epsilon \rightarrow 0$ limit (isolated droplets) for all $d \ge 2$.
- Derives scaling state, demonstrates its universality.
- Original prediction of $L \sim t^{1/3}$ exponent.

Assume Scaling: then derive consequences.

- Huse ('86) argued COP $t^{1/3}$ extends to all ϵ .
- Bray T = 0 RG fixed point scenario ('89) also gives $t^{1/3}$.
- Bray-Rutenberg energy scaling approach ('94) provides general rule for growth exponents.

Lifshitz-Slyozov Theory ('58)

- ▶ Exact, nontrivial solution of conserved OP coarsening in dilute $\epsilon \rightarrow 0$ limit (isolated droplets) for all $d \ge 2$.
- Derives scaling state, demonstrates its universality.
- Original prediction of $L \sim t^{1/3}$ exponent.

Assume Scaling: then derive consequences.

- Huse ('86) argued COP $t^{1/3}$ extends to all ϵ .
- Bray T = 0 RG fixed point scenario ('89) also gives $t^{1/3}$.
- Bray-Rutenberg energy scaling approach ('94) provides general rule for growth exponents. Explains universality classes!

So why am I here talking about universality classes?

Bray-Rutenberg energy scaling predicts growth exponent ($L \sim t^{\alpha}$) universality classes:

- α depends only on conservation law and nature of order parameter
- ► does not depend on spatial dimension d, volume fraction e, or microscopic details

So why am I here talking about universality classes?

Bray-Rutenberg energy scaling predicts growth exponent ($L \sim t^{\alpha}$) universality classes:

- α depends only on conservation law and nature of order parameter
- ▶ does not depend on spatial dimension d, volume fraction e, or microscopic details

But which quantities are universal? Normally determined by RG.

Conventional wisdom: correlation function $C(\mathbf{r}, t)$ or structure factor $S(\mathbf{k}, t)$ has same universality as the growth exponent.

So why am I here talking about universality classes?

Bray-Rutenberg energy scaling predicts growth exponent ($L \sim t^{\alpha}$) universality classes:

- α depends only on conservation law and nature of order parameter
- does not depend on spatial dimension d, volume fraction ε, or microscopic details

But which quantities are universal? Normally determined by RG.

Conventional wisdom: correlation function $C(\mathbf{r}, t)$ or structure factor $S(\mathbf{k}, t)$ has same universality as the growth exponent.

We have recently learned that this is not true!

Distinct Universality (for conserved scalar OP)

Quantities that affect the correlation function but not the growth exponent:

Trivial

- \blacktriangleright volume fraction ϵ
- \blacktriangleright spatial dimension d
- ... everyone knew that already.

 $\epsilon < 1/2$

Distinct Universality (for conserved scalar OP)

Quantities that affect the correlation function but not the growth exponent:

Trivial

- \blacktriangleright volume fraction ϵ
- \blacktriangleright spatial dimension d
- ... everyone knew that already.

 $\epsilon = 1/2$

 $\epsilon < 1/2$

Less Trivial

• anisotropic surface tension $\sigma(\hat{n})$ (e.g. Ising model)

exact Lifshitz-Slyozov solution for dilute coarsening [BVL & Rutenberg '99; Gildner, Fowler, and BVL '06]

Questions

- Does the scaled correlation function have any universality?
- If so, what are its universality classes?
- Which quantities belong to which universality classes?

For example: higher order correlation functions, curvature distribution, autocorrelation exponents, persistence exponents, amplitudes, ...

Questions

- Does the scaled correlation function have any universality?
- If so, what are its universality classes?
- Which quantities belong to which universality classes?

For example: higher order correlation functions, curvature distribution, autocorrelation exponents, persistence exponents, amplitudes, . . .

My proposed answer:

Growth exponents are a special case. For general universality look at the sharp defect dynamics.

Coarsening Introduction

Theoretical Picture

Asymptotic Defect Trajectory Analysis

Domain Morphology Universality Conjecture

Summary and Outlook

What are the dynamical rules for the interfaces?

For a given domain configuration, e.g.

what is the sequence of future domain configurations?

We can take advantage of late-time asymptotia to reduce the original field dynamics to simpler sharp defect dynamics.

Step 1. Surface Tension

Consider a flat interface at x = 0 with b.c. as shown:

Equilibrium concentration profile given by

$$0 = \mu(\mathbf{x}) = \frac{\delta F}{\delta \phi(\mathbf{x})} = V'(\phi) - c\nabla^2 \phi + \dots$$

Solution $\phi_{int}(x)$ gives free energy per unit interface:

$$\sigma \equiv F[\phi_{int}(x)]/A$$

For curved interfaces, $\sigma(\kappa) = \sigma + O(\kappa)$

Step 2. Bulk Mobility

▶ In bulk $\phi \approx \phi_1^{eq}$, so local chemical potential proportional to the supersaturation:

$$\mu(\mathbf{x}) = V''(\phi_1^{eq}) \big(\phi(\mathbf{x}) - \phi_1^{eq} \big) + O(1/L^2)$$

• Asymptotic current: $\mathbf{J} = -M(\phi) \nabla \mu = -M(1) V''(1) \nabla \phi$

- ► Gives diffusion equation in bulk: ∂_tφ = −∇ · J ~ D∇²φ. Same equation for μ(x).
- \blacktriangleright Diffusion field equilibrates in domains of size L in time $t_{eq} \sim L^2$

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 5. Interface velocity determined by bulk flux to interface:

$$\Delta \phi_{eq} v(\mathbf{x}) = \hat{n} \cdot (\mathbf{J}_{+} - \mathbf{J}_{-}) \Rightarrow v(\mathbf{x}) = rac{M_1 \, \hat{n} \cdot
abla \mu_1 - M_2 \, \hat{n} \cdot
abla \mu_2}{\Delta \phi_{eq}}$$

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 5. Interface velocity determined by bulk flux to interface:

$$\Delta \phi_{eq} v(\mathbf{x}) = \hat{n} \cdot (\mathbf{J}_{+} - \mathbf{J}_{-}) \Rightarrow v(\mathbf{x}) = \frac{M_{1} \,\hat{n} \cdot \nabla \mu_{1} - M_{2} \,\hat{n} \cdot \nabla \mu_{2}}{\Delta \phi_{eq}}$$

Huse: $v \sim \dot{L}$, $\nabla \mu \sim 1/L^2$

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 5. Interface velocity determined by bulk flux to interface:

$$\Delta \phi_{eq} v(\mathbf{x}) = \hat{n} \cdot (\mathbf{J}_{+} - \mathbf{J}_{-}) \Rightarrow v(\mathbf{x}) = \frac{M_{1} \, \hat{n} \cdot \nabla \mu_{1} - M_{2} \, \hat{n} \cdot \nabla \mu_{2}}{\Delta \phi_{eq}}$$

Huse: $v \sim \dot{L}$, $\nabla \mu \sim 1/L^2 \Rightarrow \dot{L} \sim 1/L^2 \Rightarrow L \sim t^{1/3}$

Take case of equal bulk mobilities: $M_1 = M_2 = M$.

- For all such systems v(x) same at each point along the interface, up to an overall factor Mσ/(Δφ_{eq})².
- All systems will evolve through the same sequence of configuration: they have the same defect trajectories.
- ► In rescaled time $\tau = \frac{M\sigma}{(\Delta\phi_{eq})^2}t$, all systems evolve identically!
- If $M_1 \neq M_2$, the above still hold for all systems with the same ratio M_1/M_2 .

Coarsening Introduction

Theoretical Picture

Asymptotic Defect Trajectory Analysis

Domain Morphology Universality Conjecture

Summary and Outlook

Domain Morphology Distribution

Domain structure governed by a domain morphology distribution $P[t; \phi(\mathbf{x}, t)]$ with asymptotic scaling form $P[\phi(\mathbf{x}/L)]$.

 P[φ] (DMD) contains all equal time properties of coarsening system, e.g.

$$C(\mathbf{x},t) = \int \mathcal{D}\phi P[\phi] \phi(\mathbf{0},t)\phi(\mathbf{x},t)$$

- Ockham (circa 1300) suggests that any correlation function universality comes from DMD universality.
- ► Note: P[φ] + asymptotic defect trajectories provides full specification of scaling state.

Domain Morphology Universality

Conjecture: DMD has same universality as the defect trajectories.

Wrong if

- different trajectories can lead to the same DMD (superuniversal)
- different DMD possible from same trajectories (history dependent)

Consequence: analysis of which factors determine trajectories \Rightarrow prediction of universality classes for the DMD and the entire asymptotic state.

Corollary: in rescaled time growth law $L \sim A\tau^{\alpha}$ is determined by the DMD \Rightarrow the growth law amplitude should have the same universality as the correlation function.

Predicted Universality Classes — conserved scalar OP

- anisotropic σ(n̂) modifies μ(x) at interface, so trajectories and DMD depend on σ(n̂, T).
- ▶ field-dependent mobility M(φ), specifically the ratio M(φ₁^{eq})/M(φ₂^{eq}).

• volume fraction ϵ and spatial dimension d.

DMD universality determines correlation function, growth law amplitude, persistence exponents,

Some Extra Bits

- Time scaling can be determined experimentally by evaporating isolated drops
- Defect trajectory analysis determines physical length and time scales in CDS simulations [Oono & Puri '88].
- Growth law amplitudes extracted from published Cahn-Hilliard and CDS data agree
- ► Exact solution in dilute limit [Rutenberg & BVL '99] shows persistence exponent depends on $\sigma(\hat{n}) \Rightarrow$ DMD universality class
- Powerful new method for generating sharp defect dynamics [Watson '06]

Coarsening Introduction

Theoretical Picture

Asymptotic Defect Trajectory Analysis

Domain Morphology Universality Conjecture

Summary and Outlook

Coarsening Introduction

Theoretical Picture

Asymptotic Defect Trajectory Analysis

Domain Morphology Universality Conjecture

Summary and Outlook

What's new to learn about late stage coarsening?

- The growth law exponent and the correlation function do not have the same universality (FACT)
- The growth law amplitude and the correlation function do have the same universality, determined by the DMD (OCKHAM + ANALYSIS)
- These universality classes apply to the complete asymptotic scaling state, and might be determined defect trajectories (CONJECTURE)

It is time to look!

Future Work

- It is time to look! Simulations in progress with Andrew Rutenberg, Jaime Wallace, Phil Marquis, James Miante, and David Enrico
- Generalize defect trajectory analysis (vector order parameter, liquid crystals, hydrodynamics, facets, froths, ...). With Steven Watson.
- Autocorrelation exponent? Is it superuniversal like the growth exponent?