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Coarsening . . .

is a nonequilibrium relaxational process in which the characteristic
length scale grows with time.

Many examples in nature:

I binary alloys

I polycrystals

I magnetic domains

I binary fluids

I epitaxy

I salad dressing

I polymer blends

I soap froths

I colloids

I liquid crystals

I faceted surfaces

I and more . . .



Phase Ordering Dynamics (binary alloys, polymer blends)

I Rapid quench into the forbidden
region of a phase diagram

I system responds locally by
equilibrating into one of the two
phases

I leads to equilibrated domains
separated by costly interface

I dissipative dynamics gives
coarsening
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2D Dry Soap Froth

t = 1.95 h t = 21.5 h t = 166 h

Glazier, Gross, and Stavans, Phys. Rev. A 36, 306 (1987).



3D Wet Soap Froth

Magnetic Resonance Imaging

Gonata et al., Phys. Rev. Lett.

75, 573 (1995).



(a) Colloidal Suspension and (b) Polymer Solution

Tanaka, Nishikawa, and Koyama, J. Phys. Cond. Matt. 17, L143 (2005).



Homoepitaxial Islands

Cu on a Cu(100) surface

Pai et al., Phys. Rev. Lett. 79, 3210 (1997).



Random Copolymers – PEH/PEB

Shimizu et al., Polymer 45, 7061 (2004).



Why is coarsening so common?

Requirements:

I Excess free energy stored in stable, local defects (e.g., domain
walls): F − Feq ∝ ρdef

L

I Dissipation:
dF

dt
< 0 ⇒ dρdef

dt
< 0

Result: growing characteristic length L(t)



Basic Features of Coarsening

Sharp defects defect size ξ fixed, so for asymptotically late
times L(t)� ξ ⇔ sharp-defect limit.

Self-similarity domain structure statistically invariant when
rescaled by L(t).

Implies correlation function scaling
C(r, t) = f

(
r/L(t)

)
Power law growth characteristic scale L ∼ tα

Universality exponent α determined by only a few general
features: conservation laws and nature of
order parameter



Coarsening Models I: Kinetic Ising Models

Lattice of spins si = ±1, with hamiltonian H = −J
∑
〈ij〉

sisj

Spins initially random (Ti =∞). Quench at time t = 0 to T < Tc.

Glauber Dynamics

I spins flip with probability determined by energy ⇒
nonconserved order parameter.

Kawasaki Dynamics

I neighboring spins exchanged ⇒ conserved OP.

I volume fraction ε additional parameter

I appropriate for binary mixtures: ↑= Fe, ↓= Al.
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Kinetic Ising Models

Glauber (spin flip): nonconserved OP → L ∼ t1/2

Kawasaki (spin exchange): conserved OP → L ∼ t1/3



Coarsening Models II: Phase Field Models

Field φ(x, t) describes local concentration. Free energy functional:

F [φ] =
∫

ddx
{

1
2(∇φ)2 + V (φ)

}
φeq
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Allen-Cahn equation

Nonconserved OP:
∂φ

∂t
= −δF

δφ
⇒ ∂φ

∂t
= ∇2φ− V ′(φ)

Cahn-Hilliard equation

Conserved OP:
∂φ

∂t
= −∇ · J and J = −∇δF

δφ

⇒ ∂φ

∂t
= −∇2[∇2φ− V ′(φ)]
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Phase Field Models

Allen-Cahn eq: nonconserved OP → L ∼ t1/2

Cahn-Hilliard eq: conserved OP → L ∼ t1/3



Universality?

Glauber

Allen-
Cahn

L ∼ t1/2

Kawasaki

Cahn-
Hilliard

L ∼ t1/3
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Theoretical Challenge

I Systems generically evolve into a self-similar scaling state with
universal power law growth. This demands explanation!

I Characterizing this asymptotic scaling state, i.e. finding
universality classes, a starting point for analysis of real
systems.

Renormalization Group Scenario

I Critical-like behavior suggests a dynamical RG fixed point
controlling the asymptotic dynamics.

I Believed to be a T = 0 fixed point based on irrelevance of
Langevin additive noise (∝

√
T ) for phase field models.

I Not (yet) tractable — a strong-coupling fixed point.

How do we proceed?
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Two Routes to Progress

Lifshitz-Slyozov Theory (’58)

I Exact, nontrivial solution of conserved OP coarsening in dilute
ε→ 0 limit (isolated droplets) for all d ≥ 2.

I Derives scaling state, demonstrates its universality.

I Original prediction of L ∼ t1/3 exponent.

Assume Scaling: then derive consequences.

I Huse (’86) argued COP t1/3 extends to all ε.

I Bray T = 0 RG fixed point scenario (’89) also gives t1/3.

I Bray-Rutenberg energy scaling approach (’94) provides general
rule for growth exponents. Explains universality classes!
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So why am I here talking about universality classes?

Bray-Rutenberg energy scaling predicts growth exponent (L ∼ tα)
universality classes:

I α depends only on conservation law and nature of order
parameter

I does not depend on spatial dimension d, volume fraction ε, or
microscopic details

But which quantities are universal? Normally determined by RG.

Conventional wisdom: correlation function C(r, t) or structure
factor S(k, t) has same universality as the growth exponent.

We have recently learned that this is not true!
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Distinct Universality (for conserved scalar OP)

Quantities that affect the correlation function but not the growth
exponent:

Trivial

I volume fraction ε

I spatial dimension d

. . . everyone knew that already. ε = 1/2 ε < 1/2

Less Trivial

I anisotropic surface tension σ(n̂) (e.g. Ising model)

σ(n̂) exact Lifshitz-Slyozov solution for
dilute coarsening

[BVL & Rutenberg ‘99; Gildner, Fowler,

and BVL ’06]
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Questions

I Does the scaled correlation function have any universality?

I If so, what are its universality classes?

I Which quantities belong to which universality classes?

For example: higher order correlation functions, curvature
distribution, autocorrelation exponents, persistence exponents,
amplitudes, . . .

My proposed answer:

Growth exponents are a special case. For general universality look
at the sharp defect dynamics.
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Asymptotic Defect Trajectories

What are the dynamical rules for the interfaces?

For a given domain configuration, e.g.

what is the sequence of future domain configurations?

We can take advantage of late-time asymptotia to reduce the
original field dynamics to simpler sharp defect dynamics.



Example: conserved scalar OP with isotropic σ

Step 1. Surface Tension

Consider a flat interface at
x = 0 with b.c. as shown:

φ2
eq

x

φ

φ1
eq

Equilibrium concentration profile given by

0 = µ(x) =
δF

δφ(x)
= V ′(φ)− c∇2φ + . . .

Solution φint(x) gives free energy per unit interface:

σ ≡ F [φint(x)]/A

For curved interfaces, σ(κ) = σ + O(κ)



Example: conserved scalar OP with isotropic σ

Step 2. Bulk Mobility

I In bulk φ ≈ φeq
1 , so local chemical potential proportional to

the supersaturation:

µ(x) = V ′′(φeq
1 )

(
φ(x)− φeq

1

)
+ O(1/L2)

I Asymptotic current: J = −M(φ)∇µ = −M(1)V ′′(1)∇φ

I Gives diffusion equation in bulk: ∂tφ = −∇ · J ∼ D∇2φ.
Same equation for µ(x).

I Diffusion field equilibrates in domains of size L in time
teq ∼ L2



Example: conserved scalar OP with isotropic σ

Step 3. Gibbs-Thomson at interfaces:

µ(x) =
σ

∆φeq
κ(x) + O(κ2)

Step 4. Quasistatic in bulk: ∇2µ = 0
since diffusion field equilibrates faster
than interfaces move.

Determines µ(x) everywhere!

Step 5. Interface velocity determined by bulk flux to interface:

∆φeqv(x) = n̂ · (J+ − J−) ⇒ v(x) =
M1 n̂ · ∇µ1 −M2 n̂ · ∇µ2

∆φeq

Huse: v ∼ L̇, ∇µ ∼ 1/L2 ⇒ L̇ ∼ 1/L2 ⇒ L ∼ t1/3
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Example: conserved scalar OP with isotropic σ

Take case of equal bulk
mobilities: M1 = M2 = M .

I For all such systems v(x) same at each point along the
interface, up to an overall factor Mσ/(∆φeq)

2.

I All systems will evolve through the same sequence of
configuration: they have the same defect trajectories.

I In rescaled time τ = Mσ
(∆φeq)2

t, all systems evolve identically!

I If M1 6= M2, the above still hold for all systems with the same
ratio M1/M2.
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Domain Morphology Distribution

Domain structure governed by a domain morphology distribution
P [t;φ(x, t)] with asymptotic scaling form P [φ(x/L)].

I P [φ] (DMD) contains all equal time properties of coarsening
system, e.g.

C(x, t) =

∫
DφP [φ] φ(0, t)φ(x, t)

I Ockham (circa 1300) suggests that any correlation function
universality comes from DMD universality.

I Note: P [φ] + asymptotic defect trajectories provides full
specification of scaling state.



Domain Morphology Universality

Conjecture: DMD has same universality as the defect trajectories.

Wrong if

I different trajectories can lead to the same DMD
(superuniversal)

I different DMD possible from same trajectories (history
dependent)

Consequence: analysis of which factors determine trajectories ⇒
prediction of universality classes for the DMD and the entire
asymptotic state.

Corollary: in rescaled time growth law L ∼ Aτα is determined by
the DMD ⇒ the growth law amplitude should have the same
universality as the correlation function.



Predicted Universality Classes — conserved scalar OP

I anisotropic σ(n̂) modifies µ(x) at interface, so trajectories
and DMD depend on σ(n̂, T ).

I field-dependent mobility M(φ), specifically the ratio
M(φeq

1 )/M(φeq
2 ).

M1=M2 M1/M2

M

φ1 φ2

so same UC UC
different

so same UC
same

I volume fraction ε and spatial dimension d.

DMD universality determines correlation function, growth law
amplitude, persistence exponents, . . . .



Some Extra Bits

I Time scaling can be determined experimentally by evaporating
isolated drops

I Defect trajectory analysis determines physical length and time
scales in CDS simulations [Oono & Puri ’88].

I Growth law amplitudes extracted from published Cahn-Hilliard
and CDS data agree

I Exact solution in dilute limit [Rutenberg & BVL ’99] shows
persistence exponent depends on σ(n̂) ⇒ DMD universality
class

I Powerful new method for generating sharp defect dynamics
[Watson ’06]
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What’s new to learn about late stage coarsening?

I The growth law exponent and the correlation function do not
have the same universality (FACT)

I The growth law amplitude and the correlation function do
have the same universality, determined by the DMD
(OCKHAM + ANALYSIS)

I These universality classes apply to the complete asymptotic
scaling state, and might be determined defect trajectories
(CONJECTURE)

It is time to look!



Future Work

I It is time to look! Simulations in progress with Andrew
Rutenberg, Jaime Wallace, Phil Marquis, James Miante, and
David Enrico

I Generalize defect trajectory analysis (vector order parameter,
liquid crystals, hydrodynamics, facets, froths, . . . ). With
Steven Watson.

I Autocorrelation exponent? Is it superuniversal like the growth
exponent?
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