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Reaction-Diffusion Models

I classical particles hop randomly on lattice

I one-species or multi-species

I react when occupying the same site

Examples:

?
Α+Α→Α Α+Β→∅



The Trapping Reaction

Two-species reaction-diffusion system A + B → A

I A = “traps” with diffusion constant D

I B = “particles” with diffusion constant D′. δ ≡ D′/D

Rate Equation: ḃ = −λ′a0b ⇒ b ∼ exp(−a0λ
′t)

Static Traps: case D = 0 special, dominated by rare regions
b ∼ exp(−Γtd/(d+2)) [Donsker & Varadhan ’75]

Fluctuations: rate equation valid only for d > 2.

b ∼

{
exp(−Γt/ ln t) d = 2

exp(−Γtd/2) d < 2

[Bramson & Lebowitz ’88, Bray & Blythe ’02]



Reacting Traps

We consider the case where the trap density also decays due to

A + A →

{
A coalescence, probability p

∅ annihilation, probability 1− p,

a well-studied one-species reaction.

Rate Equation: ȧ = −(2− p)λa2 ⇒ a ∼ 1

(2− p)λt

Fluctuations: again important for d ≤ 2. RG techniques give

a ∼

Ãp
ln t

Dt
d = 2

Ap(Dt)−d/2 d < 2

with universal amplitude [Peliti ’86, BL ’94]



The Trapping Reaction with Reacting Traps

The decaying trap density
increases the survival
probability of particles tim

e

position

Rate Equation: ḃ = −λ′ab ∼ λ′

(2− p)λt
b ⇒ b ∼ t−θ

with nonuniversal θ = λ′

(2−p)λ .

Exponential decay replaced by a power law!

Fluctuations: give a universal decay exponent θ(p, δ) for d < 2.
Theoretical results include exact solutions, RG calculations,
and Smoluchowski theory.



Exact Solutions for Decay Exponent θ(p, δ) in d = 1

Persistence: For D′ = 0, the B particles measure locations not
visted by a trap.

θ =
2

π2
arccos

(
−p√

2(2− p)

)2

− 1

8
[Derrida et al. ’95]

3 Walker Problem: For p = 1 (A + A → A), a B particle sees
only its left and right neighbors. Recall δ = D′/D.

θ =
π

2 arccos[δ/(1 + δ)]
[Fisher & Gelfand ’88]

B is a Tagged A: for δ = 1 (equal diffusion constants) and p = 0
(A + A → ∅). Gives θ = 1/2.



Smoluchowski Theory

Correlation function mean field theory:

1. attach the origin of a coordinate system to a particle

2. solve for the diffusion field exterior to the particle, r > R.
BC’s:

I n(R, t) = 0 at particle boundary
I n(r →∞, t) = n(t): uniform density at infinity

3. use the resulting flux toward the particle to define an effective
rate constant

4. solve rate equation with time-dependent rate constant

Surprisingly effective for one-species reactions.

Gives b ∼ t−θ with θ =
d

2− p

(
1 + δ

2

)d/2

for d < 2.



Renormalization Group Calculation

I RG techniques describe fluctuation dominated case d ≤ 2.

I Uses Doi-Peliti mapping from master equation to a field
theory.

I Gives b ∼ t−θ with

θ =
1 + δ

2− p
+ f(p, δ)ε + O(ε2)

where ε = 2− d. [Howard ’96, Krishnamurthy, Rajesh, &

Zaboronski ’03, Rajesh, & Zaboronski ’04]

I Demonstrates universality!
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Straightforward Monte Carlo

Randomly populate a lattice with A and B particles, randomly hop
them, and remove particles when they land on the same site.

Random Sequential Update: choose a particle at random, hop
and react, then update time by the inverse of the density

Parallel Update: hop all particles simultaneously. Can be done
without bias when all particles occupy even sites at the
same time.



Improved Monte Carlo

The B particle distribution remains locally Poissonian at all times!

This is because each update consists of

1. On each site, splitting the particles into groups determined by
their hopping destination

2. Combining the particles hopping to the same site

3. Removing the particles with probability r if the destinaton site
is occupied by a trap.

. . . so local distribution specified by local mean.



Improved Monte Carlo: Update Rules for Local Mean

I The traps (A particles) are still treated via Monte Carlo.

I For a given realization of the trap dynamics, the entire B
particle distribution is obtained via simple floating point
update rules

Diffusion: b̃i,t+1 = z−1
∑

j bj,t

Reaction: bi,t+1 = (1− r)ni,t+1 b̃i,t+1

where ni,t is the number of traps on site i at time t.

I D 6= D′ by taking multiple A or B steps

I Benefit is much better statistics for little extra effort
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Particle Density Decay

Simulated p = 0, 1
4 , 1

2 , 3
4 , 1 and δ = 1

5 , 1
3 , 1

2 , 1, 2, 3, 5 in d = 1

A density known, confirmed. B density power-law in all cases.
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Decay Exponent θ versus p
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Decay Exponent θ versus δ = D′/D
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Decay Exponent θ versus δ = D′/D
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Nonuniversal Amplitude

A + B → A with probability r when they share a site.

Exponent is universal with respect to microscopic rate, but
amplitude isn’t.

A + A → A, with
D = D′.

Slope −3/2 for
reference.
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Trap-Trap Correlation Function

Simply scales with the diffusion length:

CAA(x, t) =
〈a(x, t)a(0, t)〉 − 〈a(t)〉2

〈a(t)〉2
∼ fAA(x/t1/2)
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Trap-Particle Correlation Function: p = 0

CAB(x, t) = 〈a(x,t)b(0,t)〉−〈a(t)〉〈b(t)〉
〈a(t)〉〈b(t)〉 ∼ fAB(x/t1/2)
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Trap-Particle Correlation Function: p = 1
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Particle-Particle Correlation Function

CBB(x, t) = 〈b(x,t)b(0,t)〉−〈b(t)〉2
〈b(t)〉2 ∼ fBB(x/t1/2)?
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Anomalous Dimension

〈a2〉c
〈a〉2

∼ 〈ab〉c
〈a〉〈b〉

∼ constant, but
〈b2〉c
〈b〉2

∼ tφ
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φ versus δ = D′/D
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BB Correlations

Now we find CBB(x, t) ∼ tφfBB(x/t1/2) case p = 1:
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4 Walker Problem

In d = 1 for p = 1: exponent φ a property of a particular 4 walker
problem:

tim
e

position
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Field Theory

Classical particle model can be mapped to a field theory with
S = SD + SR + Si:

SD =
∫

ddxdt
[
ā(∂t −D∇2)a + b̄(∂t −D′∇2)b

]
SR =

∫
ddxdt

[
(2− p)λ0āa2 + λ0ā

2a2 + λ′
0b̄ab + λ′

0āb̄ab
]

Si = −
∫

ddx
[
a0ā(t = 0) + b0b̄(t = 0)

]
A B

λ0 λ0−

λ0−λ0−

Initial terms: a0 b0

Propagators:

Vertices: (2−p)−



Loop Expansion

Density = + ...

Response Function
t2 t1

=

++

+ + + ...

One Loop Diagrams:

a(0) =

Density: a(0)(t) =
a0

1 + a0(2− p)λ0t

Response Function:

G
(0)
AA(p, t2, t1) = e−Dp2(t2−t1)

(
1 + a0(2− p)λ0t1
1 + a0(2− p)λ0t2

)2



RG Calculation for Traps

I To renormalize bulk for d ≤ 2, only coupling constant
renormalization needed:

= + + + ...

I Under renormalization λ0 → const.g∗, where g∗ = O(ε) fixed
point coupling.

I However: a0 → a0t
d/2, so a0 must be summed to all orders

⇒ loop expansion.

a(t) = (Dt)−d/2
[A

ε
+ B + O(ε)

]



RG Calculation for Particles

Density =

Response Function
t2 t1

=

+

+ + + ...

One Loop Diagrams:

(0) =b + + ...

Proceeding naively to particle calculation:

b(t) ∼ t−g′
R/(2−p)gR

[
A +

B

ε
g′
Rf(g′

R/gR) + O(g2
R)

]

Something is wrong.



RG Calculation for Particles

b(t) ∼ t−g′
R/(2−p)gR

[
A +

B

ε
g′
Rf(g′

R/gR) + O(g2
R)

]
I Howard ’96: regulate the a0 →∞ limit, removes the 1/ε,

adds logarithmic time dependence: resum.

I KRZ ’03: Since bare b(t) diverges as ln t for small t (d = 2),
renormalize the initial density b0

I RZ ’04: Or instead do bare expansion of t∂t ln b(t) and
renormalize exponent directly.

All approaches give the same θ. Can we use one to calculate our
anomalous dimension φ?



RG Calculation for For Anomalous Dimension

Simplest approach:

CBB(p = 0, t) =

∫
ddx eip·xCBB(x, t) ∼ td/2+φ

Tree level:

AA AB

BB

Gives φ = 0 + O(ε). So we need to look at 1-loop correlations.



Trap-Trap 1-Loop Correlations

6 diagrams:



Trap Correlation Function — Topology/Causality



AB and BB Correlation Function — Many Diagrams

Number of one-loop diagrams:

I AA: 6

I AB: 42

I BB: 59

Would be hopeless, except





Summary

I New simulation technique gives high quality data for modest
effort.

I Could demonstrate the universality of the correlation
functions, nonuniversality of the density amplitude.

I We have learned that the particle-particle correlations do not
obey simple scaling: anomalous dimension.

I A tedious but reasonably simple calculation should give us an
O(ε) value for φ.
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