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Field Theory Approach to Diffusion-Limited Reactions

1. Models and Mappings

How to turn stochastic particle models into a field theory,
with no phenomenology.

2. Single-Species Annihilation
Field theoretic renormalization group calculation for
A+ A — 0 reaction in gory detail.

3. Applications

Higher order reactions, disorder, Lévy flights, two-species
reactions, coupled reactions.

4. Active to Absorbing State Transitions

Directed percolation, branching and annihilating random
walks, and all that.



Diffusion-Limited Reactions

One or more species of particles undergoing random walks on a
lattice, with a reactions occurring for particles on the same lattice
site
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Diffusion-Limited Reactions

One or more species of particles undergoing random walks on a
lattice, with a reactions occurring for particles on the same lattice
site

A+AA J’* A+B - [ * T;
AP THT

Example: for A+ A — 0 the density of particles decays as

Ct1 ford > 2
p(t) =< Alnt/Dt  for d =2
Ay(Dt)=42 for d < 2

where A, and A are universal numbers!



Field Theory Approach to Diffusion-Limited Reactions:

1. Models and Mappings

Master Equation for Lattice Models



Stochastic Classical Particles on a Lattice

Consider a set of lattice sites labeled 4 =1, 2, 3, ..., and each site
is occupied by ni, ng, n3, ... particles.
n .

1
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i

Define
» « = a particular state, i.e., « = {nj,na,n3,...}

» P(a,t) = the probability of obtaining state « at time ¢.



Probability Master Equation

Dynamical processes processes (hops, reactions, decays) will cause
a change of state from « to 3.

‘wa_)/g = rate of transition from « to (3, defines dynamics‘

Master Equation

7P (a, 1) Z [wﬁ_w — Wa—pP(a,t)
B

flow into « flow out of a

> >, Pla,t) =1 preserved by the master equation

» Initial conditions P(«,0) need to be specified



Master Equation for A — 0 Decay

Consider a single lattice site that contains some number of
identical particles. These particles decay at rate \.

The rate for a transition from n to m particles is

0 form#n-—1
Wp—sm, =
e n\ form=n-—1

and the master equation is

SPt) = A|(n+ DP(n-+1,0) —n P(n,)



Master Equation for A — 0 Decay

Consider a single lattice site that contains some number of
identical particles. These particles decay at rate \.

The rate for a transition from n to m particles is

0 form#n-—1
Wp—sm, =
e n\ form=n-—1

and the master equation is

SPt) = A|(n+ DP(n-+1,0) —n P(n,)

Wait! That doesn’t look like exponential decay ...



Master Equation to Differential Equation

Let p(t) = (n) =, nP(n,t) be the average number of particles
at time ¢. Then

p= Z nP(n,t) = Z n [)\(n +1)P(n+1,t) — AnP(n, t)]
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Master Equation to Differential Equation

Let p(t) = (n) =, nP(n,t) be the average number of particles
at time ¢. Then

p= ZnP(n,t) = Zn[)\(n—i- 1)P(n+1,t) — )\nP(n,t)]
=AY nn+1)P(n+1,t) = A> n’P(n,t)
—)\Z — 1)mP(m,t) )\anPnt

= —)\ZmP(m, t)



A+ A — 0 Reaction

Again, consider a single lattice site, with the rule that a pair of
particles may annihilate each other. The rates are

0 form #n—2
Wn—m =
nn—1)\ form=n-—2

and the master equation is

%P(n, 1) = A+ 2(n+ )P +2,1) — nln— 1)P(n,1)]



Hop

4T
Now consider two sites, i = 1 T
and 2, with a rate I of 3
hopping from site 1 to site 2. E
0 dH
1 2 | 1 2

0 formi#n1—1 or mog#ns+1

nl' formi=ni—1land mg =n9+1

W(ny,ne)—(m1,me) — {
and the master equation is

d
%P(nl,ng,t) = F[(nl + 1)P(n1 + 1,n9 — 1,t) — n1P(n1,n2,t)



Consider a one-dimensional chain of n; 3r

lattice sites ¢ =1, 2, ...and let all _/1 r
particles hop left or right with rate — —K\

I'. The master equation is | | H

d
—Pozt FZ{n,—i—l (ni +1,n;—1,...,t) —n;P(a, t)

(nj+1)P(ni —1,mnj +1,...,t) — an(a,t)}



Consider a one-dimensional chain of n; 3r

lattice sites ¢ =1, 2, ...and let all _/i r
particles hop left or right with rate — —K\

I'. The master equation is | | H

d

—Pozt FZ{nz—i—l (ni +1,n;—1,...,t) —n;P(a, t)
(nj+1)P(ni —1,mnj +1,...,t) — an(a,t)}

Define p(z,t) = >, niP(a,t) where x = iAx.

For small Ax this becomes the diffusion equation:

op 0?p

3 = 92 D = I'Ax? = diffusion constant.
T



Master Equation for A+ A — 0 Diffusion-Limited Reaction

25 2 |+ DPC it lng =L 1) = mP({n}, 1)
+(nj+ D)P(.. =1, ny+1,.. . t) — an({n},t)]

—i—)\Z[(ni—l—Q)(ni—|—1)P(...,ni+2,...,t)
—ni(n; —1)P({n},t)
ngie—no

with P({n},0) = H - for random initial conditions.

7.
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Master Equation for A+ A — 0 Diffusion-Limited Reaction

25 2 |+ DPC it lng =L 1) = mP({n}, 1)
+(nj+ D)P(.. =1, ny+1,.. . t) — an({n},t)]

—i—)\Z[(ni—l—Q)(ni—|—1)P(...,ni+2,...,t)
—ni(n; —1)P({n},t)
ngie—no

with P({n},0) = H - for random initial conditions.

7.

i

Yuck!



Field Theory Approach to Diffusion-Limited Reactions:

1. Models and Mappings

Doi Representation



Doi Occupation Number Representation (Fock Space)

For a single lattice site:

» Introduce a creation operator ' and annihilation operator @,
with commutator [, a'] = 1.

» Represent the state of zero particles by |0), defined via
al0y = 0.

> Represent a state of n particles by |n) = a™|0).
(Note: normalization differs from usual QM.)

» For this state

al|n) = |n+1) aln) =n|n—1) ata|n) = n|n)



Doi Occupation Number Representation (Fock Space)

For a single lattice site:

» Introduce a creation operator ' and annihilation operator @,
with commutator [, a'] = 1.

» Represent the state of zero particles by |0), defined via
al0y = 0.

> Represent a state of n particles by |n) = a™|0).
(Note: normalization differs from usual QM.)

» For this state
al|n) = |n+1) aln) =n|n—1) ata|n) = n|n)

For multiple lattice sites: introduce a pair a;, d;f

{n} =(n1,ng,...) & |{n} HATm

at each site



Doi Representation, part Il

We can pack the probability P into a Fock space state:

=Y " P({n}. ) {n}) =Y P({n},t) me

{n} {n}

and re-write the master equation in Schrodinger-like form:

d N
19()) = —H|o(t))



Doi Representation, part Il

We can pack the probability P into a Fock space state:

=Y P{n}.0)[{n}) =) _P({n}.1) H&m

{n} {n}

and re-write the master equation in Schrodinger-like form:

d .
Zlo(0) = ~Hlo()

Why do this? Because it is a simpler description of the dynamics.
For A+ A — 0 diffusion-limited reaction we get

=13 (af —al)(a; - ay) Azl—a*%
(i)

and formal solution |é(t)) = exp(—Ht)|$(0)).



A+ A — 0 on a Single Site

Master equation:

%P(n,t) = [+ 2+ VP +2,0) —n(n — 1)P(n.1)]

Multiply by |n) and sum over n:

7@ —)\ZPn+2t)(n+2)(n+1|n )\ZPnt n(n —1)|n)



A+ A — 0 on a Single Site

Master equation:

%P(n,t) = [+ 2+ VP +2,0) —n(n — 1)P(n.1)]

Multiply by |n) and sum over n:

7@ —)\ZPn+2t)(n+2)(n+1|n )\ZPnt n(n —1)|n)

=AY P(n+2,t)a%ln+2) = XY _ P(n,t)al*a’n)

= Aa® - a%a®) Y P(n,t) |n)

= A1 —a")a’(p(t)) = —H|o(t))



Hop from Site 1 to Site 2

Master Equation

d
$P(n1, ng,t) = I‘{(nl—i—l)P(nl—i—l,nQ—l,t) — an(nl, ng,t)]

Multiply by |n1,n92) and sum over ny and na:

=T Z P(nl—i—l,ng—l,t) (n1+1)]n1,ng>

ni,n2
-T Z 7’Ll,7’L2, 771|n1an2>
ni,n2
=T Y P(m+1,n2—1,¢) abay [nm1+1,ny—1)
ni,n2

_F Z n17n27 a/1 |n17n2>

ni,n2

= I(a} — a})ar [o(t))



» Hop from site 1 to site 2:
Hy_p =T(al —ab)a
» Allow for the reverse hop with the same rate:
Hyep =T(a] — a)(ar — ap)

» For hops between all neighboring lattice sites:




Multiple Species

With two species reactions, such as A + B — 0 reaction, the
master equation is defined in terms of A-particle and B-particle
occupation numbers

P({m},{n},1)

For the Doi representation, we introduce dlstlnct creatlon and
annihilation operators for each species: a;, b and b and
define state

() = > P({m}. {n}.t) [Jal™ 5" 0)
{m},{n} i



Doi Hamiltonians

Each process contributes two terms to H, of the form
(rate) [(reactants) — (reaction)}

(reactants) = creation and annihilation operator for each reactant,
normal ordered

(reaction) = annihilation operator for each reactant, creation
operator for each product, normal ordered

Examples:
A+A—0 Aal%a?—a? A+A— A MNaa®—ala?
A—A+A MNala—al%a) A+B—C MNa'btab— étab]

Hop 1 — 2 T[ala; —alay]



Observables

For our classical particle system, averages are given by

=Y A({n}) P({n},1)
)

To map this to the Doi representation, we need a projection state
(P| = (0]eXi %, which has properties

(PI)=1 (Plaj=(P| = (Pln)=1
Then, for the operator A = A({n; — &;-rdi}) we get

(A()) = (P|A|g(1)) = (P|AeT|6(0))

Note: for Poisson initial conditions, |¢(0)) =[], e_”0+”0‘3;r|0>



Probability Conservation

Check Normalization

For some initial state P({n},0) we average the identity operator:

(PIL|g(0)) = (P> P({n},0)[{n}) = > P({n},0)=1v
{n} {n}

Check Probability Conservation
What is the condition on H? We need

1= (Plie"76(0)) = (P|(1 — Ht + L12H? — ...)|$(0))
for all ¢, so we require (73|H' = 0. Equivalently, H — 0 as &;f — 1.

Note: H need not be hermitian!



Field Theory Approach to Diffusion-Limited Reactions:

1. Models and Mappings

Mapping to Field Theory



Coherent States

The coherent state |¢) = exp(—3|¢|? + ¢a')|0) with complex ¢
has properties

alg) = ¢lg),  (dla’ = (gl¢*

and the overlap relation

(P1|¢2) = exp(—3|p1|* — 3] ¢2|? + ¢i¢2)

Can construct a resolution of the identity operator

=3 Liinl

n



Coherent States

The coherent state |¢) = exp(—3|¢|? + ¢a')|0) with complex ¢
has properties

alg) = ¢lg),  (dla’ = (gl¢*

and the overlap relation

(P1|¢2) = exp(—3|p1|* — 3] ¢2|? + ¢i¢2)

Can construct a resolution of the identity operator

2
=3 el = 3 i) mlomn = [ “Lloel

n m,n

by use of
1 *m n_ —|¢|% 52
Omn = P"MP"e d“¢

mlm



Coherent State Representation

Given H(al,a;), take formal solution |¢(t)) = e~H*|$(0)) and
divide time ¢ into a number of small increments At via

e~Ht = exp(—HAt)Y A

Insert 1 = [ Cl27¢]¢><¢| between each successive time step:

/ o b ad) (beeade P00 (Bele Db a) (Grad] -



Coherent State Representation

Given H(al, a;), take formal solution |¢(t)) = e~*|$(0)) and
divide time ¢ into a number of small increments At via

e Ht = exp(—HAL)/A

Insert 1 = [ Cl27¢]¢><¢| between each successive time step:

/ b ac) (D ade™ 3 bo) (drle™ T G ae) (de-adl - -
Now focus on a single matrix element:

<¢t‘e_ﬁAt‘¢t—At> = e HOLP-208 (16, a4

~ o H (@ 00) AL 07 b1 ne—51dt|* —5lde—nel®



Path Integral

String together many time slices in the limit At — 0 and we get

~ t
_Ht_> D *D (_ d/ *a/ H *’ >
c /¢> b exp /0 C[6*00d + H(", 6)]

where [ (di?f) . DD



Path Integral

String together many time slices in the limit At — 0 and we get

~ t
_Ht_> D *D (_ d/ *a/ H *’ >
c /¢> b exp /0 C[6*00d + H(", 6)]

where [, (di?j) — D¢* D¢

Generalize to multiple lattice sites:
ot / [[(Ds; Do) e S0
J

with

= /0 ;dﬂ (65000, + H({9}.{0})



Path Integral Observables

() = Plac g0y = [0 Aot}
with action S given by
t

s=3 a0+ [ at[oroo+ w0 0] - nosi0)
Can eliminate projection state term by field shift ¢* — 1 + ¢

t R t

/ (1+) 0o dt' = 6(t) — $(0) + / 30,6 dt’
0 0

which takes H — H ({1 + Q;j}v {9;})



/ [Z P10 + N> Z(q;z — 9j)(hi — ¢j)] - Znoq;i(o)

[dtata 506+ DV V6~ i 610)]

— /dt dx [¢(6’t — DV?)¢ — ngo 5@)}

Action is linear in ¢. Extremum:

0Sp
3¢

is the plain old diffusion equation: 9;¢ = DV?¢ + ng §(t)

=0y — DV?p —npd(t) =0



Diffusion-Limited A + A — 0 Reaction

The reaction part of the hamiltonian is
Hise = ~AY (1= 672067 — [ dla(@00de? + d?6?)
i

with the field shift ¢* — 1+ ¢ and \g = \/Az?.

Thus the complete A + A — 0 action is

S = / dz dt [a)(at — DV?)p + 20000% + X2 ¢ — ngd 4(t)

Now we're ready to do some calculations!



The A+ A — 0 Stochastic PDE

Can make the action linear in ¢ via an auxiliary field 7:
e~ M0%0? o /dn exp {—%n2 +in+/ 20 g?)(;ﬁ}
resulting in averages

/ Dy e/ / Do / D e~ ) HO=DV)6+20056% +iny/ 2R 60

The ¢ integration creates a d-function that enforces

Op = DV2p — 200> + /200 67

A stochastic reaction-diffusion equation with multiplicative noise



The A+ A — 0 Stochastic PDE

Can make the action linear in ¢ via an auxiliary field 7:
e~ M0%0? o /dn exp {—%n2 +in+/ 20 g?)(;ﬁ}
resulting in averages

/ Dy e/ / Do / D e~ ) HO=DV)6+20056% +iny/ 2R 60

The ¢ integration creates a d-function that enforces
0 = DV — 2200% +iv/2X0 61

A stochastic reaction-diffusion equation with multiplicative noise
that is complex!?



Summary and Observations

» Mapping to Doi representation simplifies the master equation
by getting rid of pesky factors involving n.

» This Fock space description natural for identical particles
acting independently, not restricted to quantum mechanics

» Fock space dynamics can be converted to a field theory
without resorting to Langevin-type phenomenology

» Technique can easily include multiple species, long-range
hops, birth/death processes, convected fields

» Mechanical forces not so easily included. H is not an energy
but rather rates.

» SPDE's are fraught with peril!
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Exercises

1. Diffusion equation:
(a) Show that the diffusion master equation is equivalent to

d
T (n;) = A2 Z n;) — (n;))

where the sum on j runs over nearest neighbors of site 4.

(b) Show that p(z,t) = (n;) with x = i Az satisfies 9,p = DI?p
as Az — 0.

(c) Generalize the result to a d-dimensional hypercubic lattice.

2. Consider the decay A — 0 on a single lattice site. Map the
problem from the master equation to the Doi hamiltonian to
the shifted field theory. Show that the Dcf; integration yields
the expected result

Op = =A@+ ny d(t)



Exercises

3. Write down the Doi hamiltonian for the reversible reaction
(A +mB = nC, with rates A for the forward reaction and p
for the reverse reaction. Here /A, for example, means ¢ A
particles are required for the reaction.

4. Coherent states:

(a) Determine the coefficients C,, in the expansion of the coherent
state [¢) =), Cpnln)

(b) Confirm the identity
1 *m n_—|o|? 52
Omn = ] d) ¢ € d d)
mlm

(c) Use the results from (a) and (b) confirm 1 = [ d27¢|¢)<¢|.
Note that d?¢ = d(Re¢) d(Img).
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