Field Theory Approach to Diffusion-Limited Reactions:
1. Models and Mappings

Ben Vollmayr-Lee
Bucknell University

Boulder School for Condensed Matter and Materials Physics
July 13, 2009
1. Models and Mappings
How to turn stochastic particle models into a field theory, with no phenomenology.

2. Single-Species Annihilation
Field theoretic renormalization group calculation for $A + A \rightarrow 0$ reaction in gory detail.

3. Applications
Higher order reactions, disorder, Lévy flights, two-species reactions, coupled reactions.

4. Active to Absorbing State Transitions
Directed percolation, branching and annihilating random walks, and all that.
Diffusion-Limited Reactions

One or more species of particles undergoing random walks on a lattice, with reactions occurring for particles on the same lattice site.

\[\text{A} + \text{A} \rightarrow \text{A} \quad \text{A} + \text{B} \rightarrow \emptyset \]

Example: for \(\text{A} + \text{A} \rightarrow \emptyset \) the density of particles decays as

\[
\rho(t) = \begin{cases}
Ct^{-1} & \text{for } d > 2 \\
\tilde{A} \ln t / D & \text{for } d = 2 \\
A_d (Dt)^{-d/2} & \text{for } d < 2
\end{cases}
\]

where \(A_d \) and \(\tilde{A} \) are universal numbers!
Diffusion-Limited Reactions

One or more species of particles undergoing random walks on a lattice, with a reactions occurring for particles on the same lattice site.

\[
\begin{align*}
A + A &\rightarrow A \\
A + B &\rightarrow \emptyset
\end{align*}
\]

Example: for \(A + A \rightarrow 0 \) the density of particles decays as

\[
\rho(t) = \begin{cases}
Ct^{-1} & \text{for } d > 2 \\
\tilde{A} \ln \frac{t}{Dt} & \text{for } d = 2 \\
A_d(Dt)^{-d/2} & \text{for } d < 2
\end{cases}
\]

where \(A_d \) and \(\tilde{A} \) are universal numbers!
Field Theory Approach to Diffusion-Limited Reactions:
1. Models and Mappings

Master Equation for Lattice Models

Doi Representation

Mapping to Field Theory
Consider a set of lattice sites labeled $i = 1, 2, 3, \ldots$, and each site is occupied by n_1, n_2, n_3, \ldots particles.

Define

- α = a particular state, i.e., $\alpha = \{n_1, n_2, n_3, \ldots \}$
- $P(\alpha, t)$ = the probability of obtaining state α at time t.

\[n_i \]

\[i \]
Dynamical processes (hops, reactions, decays) will cause a change of state from α to β.

\[
w_{\alpha \rightarrow \beta} = \text{rate of transition from } \alpha \text{ to } \beta, \text{ defines dynamics}
\]

Master Equation

\[
\frac{d}{dt} P(\alpha, t) = \sum_{\beta} \left[w_{\beta \rightarrow \alpha} P(\beta, t) - w_{\alpha \rightarrow \beta} P(\alpha, t) \right]
\]

- $\sum_{\alpha} P(\alpha, t) = 1$ preserved by the master equation
- Initial conditions $P(\alpha, 0)$ need to be specified
Consider a single lattice site that contains some number of identical particles. These particles decay at rate λ.

The rate for a transition from n to m particles is

$$w_{n \rightarrow m} = \begin{cases}
0 & \text{for } m \neq n - 1 \\
n\lambda & \text{for } m = n - 1
\end{cases}$$

and the master equation is

$$\frac{d}{dt} P(n, t) = \lambda \left[(n + 1)P(n + 1, t) - n P(n, t) \right]$$
Consider a single lattice site that contains some number of identical particles. These particles decay at rate λ.

The rate for a transition from n to m particles is

$$w_{n\rightarrow m} = \begin{cases} 0 & \text{for } m \neq n - 1 \\ n\lambda & \text{for } m = n - 1 \end{cases}$$

and the master equation is

$$\frac{d}{dt} P(n, t) = \lambda \left[(n + 1)P(n + 1, t) - n \, P(n, t) \right]$$

Wait! That doesn’t look like exponential decay . . .
Master Equation to Differential Equation

Let $\rho(t) = \langle n \rangle = \sum_n n P(n, t)$ be the average number of particles at time t. Then

$$\dot{\rho} = \sum_n n \dot{P}(n, t) = \sum_n n \left[\lambda (n + 1) P(n + 1, t) - \lambda n P(n, t) \right]$$
Master Equation to Differential Equation

Let $\rho(t) = \langle n \rangle = \sum_n n P(n, t)$ be the average number of particles at time t. Then

$$\dot{\rho} = \sum_n n \dot{P}(n, t) = \sum_n n \left[\lambda(n + 1)P(n + 1, t) - \lambda n P(n, t) \right]$$

$$= \lambda \sum_n n(n + 1)P(n + 1, t) - \lambda \sum_n n^2 P(n, t)$$

$$= \lambda \sum_m (m - 1)mP(m, t) - \lambda \sum_n n^2 P(n, t)$$
Let $\rho(t) = \langle n \rangle = \sum_n n P(n, t)$ be the average number of particles at time t. Then

$$\dot{\rho} = \sum_n n \dot{P}(n, t) = \sum_n n \left[\lambda(n + 1)P(n + 1, t) - \lambda n P(n, t) \right]$$

$$= \lambda \sum_n n(n + 1)P(n + 1, t) - \lambda \sum_n n^2 P(n, t)$$

$$= \lambda \sum_m (m - 1)m P(m, t) - \lambda \sum_n n^2 P(n, t)$$

$$= -\lambda \sum_m m P(m, t)$$

$$= -\lambda \rho$$
Again, consider a single lattice site, with the rule that a pair of particles may annihilate each other. The rates are

\[w_{n \rightarrow m} = \begin{cases}
0 & \text{for } m \neq n - 2 \\
n(n - 1)\lambda & \text{for } m = n - 2
\end{cases} \]

and the master equation is

\[\frac{d}{dt}P(n, t) = \lambda \left[(n + 2)(n + 1)P(n + 2, t) - n(n - 1)P(n, t) \right] \]
Now consider two sites, \(i = 1 \) and 2, with a rate \(\Gamma \) of hopping from site 1 to site 2.

\[
\begin{align*}
\mathcal{W}_{(n_1, n_2) \rightarrow (m_1, m_2)} &= \begin{cases}
0 & \text{for } m_1 \neq n_1 - 1 \text{ or } m_2 \neq n_2 + 1 \\
n_1 \Gamma & \text{for } m_1 = n_1 - 1 \text{ and } m_2 = n_2 + 1
\end{cases}
\end{align*}
\]

and the master equation is

\[
\frac{d}{dt} P(n_1, n_2, t) = \Gamma \left[(n_1 + 1) P(n_1 + 1, n_2 - 1, t) - n_1 P(n_1, n_2, t) \right]
\]
Consider a one-dimensional chain of lattice sites $i = 1, 2, \ldots$ and let all particles hop left or right with rate Γ. The master equation is

\[
\frac{d}{dt} P(\alpha, t) = \Gamma \sum_{\langle ij \rangle} \left[(n_i + 1)P(n_i + 1, n_j - 1, \ldots, t) - n_iP(\alpha, t)
+ (n_j + 1)P(n_i - 1, n_j + 1, \ldots, t) - n_jP(\alpha, t) \right]
\]
Consider a one-dimensional chain of lattice sites $i = 1, 2, \ldots$ and let all particles hop left or right with rate Γ. The master equation is

$$\frac{d}{dt} P(\alpha, t) = \Gamma \sum_{\langle ij \rangle} \left[(n_i + 1)P(n_i + 1, n_j - 1, \ldots, t) - n_i P(\alpha, t)
\right.
\left. (n_j + 1)P(n_i - 1, n_j + 1, \ldots, t) - n_j P(\alpha, t) \right]$$

Define $\rho(x, t) = \sum_{\alpha} n_i P(\alpha, t)$ where $x = i \Delta x$.

For small Δx this becomes the diffusion equation:

$$\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} \quad D = \Gamma \Delta x^2 = \text{diffusion constant.}$$
Master Equation for $A + A \rightarrow 0$ Diffusion-Limited Reaction

\[
\frac{d}{dt}P(\{n\}, t) = \frac{D}{\Delta x^2} \sum_{\langle ij \rangle} [(n_i + 1)P(\ldots, n_i+1, n_j-1, \ldots, t) - n_iP(\{n\}, t) \\
+ (n_j + 1)P(\ldots, n_i-1, n_j+1, \ldots, t) - n_jP(\{n\}, t)] \\
+ \lambda \sum_i [(n_i + 2)(n_i + 1)P(\ldots, n_i + 2, \ldots, t) \\
- n_i(n_i - 1)P(\{n\}, t)]
\]

with $P(\{n\}, 0) = \prod_i \frac{n_0^{n_i} e^{-n_0}}{n_i!}$ for random initial conditions.
Master Equation for $A + A \rightarrow 0$ Diffusion-Limited Reaction

\[\frac{d}{dt}P\{n\}, t) = \]

\[\frac{D}{\Delta x^2} \sum_{\langle ij \rangle} \left[(n_i + 1)P(\ldots, n_i+1, n_j-1, \ldots, t) - n_iP\{n\}, t) \right] \]

\[+ (n_j + 1)P(\ldots, n_i-1, n_j+1, \ldots, t) - n_jP\{n\}, t) \]

\[+ \lambda \sum_i \left[(n_i + 2)(n_i + 1)P(\ldots, n_i + 2, \ldots, t) \right. \]

\[\left. - n_i(n_i - 1)P\{n\}, t) \right] \]

with $P\{n\}, 0) = \prod_i \frac{n_i^{n_i} e^{-n_0}}{n_i!}$ for random initial conditions.

Yuck!
Field Theory Approach to Diffusion-Limited Reactions:
1. Models and Mappings

Master Equation for Lattice Models

Doi Representation

Mapping to Field Theory
For a single lattice site:

- Introduce a creation operator \hat{a}^\dagger and annihilation operator \hat{a}, with commutator $[\hat{a}, \hat{a}^\dagger] = 1$.

- Represent the state of zero particles by $|0\rangle$, defined via $\hat{a}|0\rangle = 0$.

- Represent a state of n particles by $|n\rangle = \hat{a}^\dagger n |0\rangle$. (Note: normalization differs from usual QM.)

- For this state

\[
\hat{a}^\dagger |n\rangle = |n + 1\rangle \quad \hat{a} |n\rangle = n |n - 1\rangle \quad \hat{a}^\dagger \hat{a} |n\rangle = n |n\rangle
\]
For a single lattice site:

- Introduce a creation operator \hat{a}^\dagger and annihilation operator \hat{a}, with commutator $[\hat{a}, \hat{a}^\dagger] = 1$.

- Represent the state of zero particles by $|0\rangle$, defined via $\hat{a}|0\rangle = 0$.

- Represent a state of n particles by $|n\rangle = \hat{a}^\dagger n |0\rangle$. (Note: normalization differs from usual QM.)

- For this state

\[
\hat{a}^\dagger |n\rangle = |n + 1\rangle \quad \hat{a} |n\rangle = n |n - 1\rangle \quad \hat{a}^\dagger \hat{a} |n\rangle = n |n\rangle
\]

For multiple lattice sites: introduce a pair \hat{a}_i, \hat{a}_i^\dagger at each site

\[
\{n\} = (n_1, n_2, \ldots) \quad \Leftrightarrow \quad |\{n\}\rangle = \prod_i \hat{a}_i^\dagger n_i |0\rangle
\]
We can pack the probability P into a Fock space state:

$$|\phi(t)\rangle = \sum_{\{n\}} P(\{n\}, t) |\{n\}\rangle = \sum_{\{n\}} P(\{n\}, t) \prod_i \hat{a}_i^{n_i} |0\rangle$$

and re-write the master equation in Schrödinger-like form:

$$\frac{d}{dt} |\phi(t)\rangle = -\hat{H} |\phi(t)\rangle$$
We can pack the probability P into a Fock space state:

$$|\phi(t)\rangle = \sum_{\{n\}} P(\{n\}, t) |\{n\}\rangle = \sum_{\{n\}} P(\{n\}, t) \prod_i \hat{a}_i^{n_i} |0\rangle$$

and re-write the master equation in Schrödinger-like form:

$$\frac{d}{dt} |\phi(t)\rangle = -\hat{H} |\phi(t)\rangle$$

Why do this? Because it is a simpler description of the dynamics. For $A + A \rightarrow 0$ diffusion-limited reaction we get

$$\hat{H} = \Gamma \sum_{\langle ij \rangle} (\hat{a}_i^\dagger - \hat{a}_j^\dagger)(\hat{a}_i - \hat{a}_j) - \lambda \sum_i (1 - \hat{a}_i^{2\dagger})\hat{a}_i^2$$

and formal solution $|\phi(t)\rangle = \exp(-\hat{H}t)|\phi(0)\rangle$.
A + A \rightarrow 0 on a Single Site

Master equation:

\[\frac{d}{dt} P(n, t) = \lambda \left[(n + 2)(n + 1)P(n + 2, t) - n(n - 1)P(n, t) \right] \]

Multiply by \(|n\rangle \) and sum over \(n \):

\[\frac{d}{dt} \langle \phi(t) \rangle = \lambda \sum_n P(n+2, t) (n + 2)(n + 1)|n\rangle - \lambda \sum_n P(n, t) n(n - 1)|n\rangle \]
\[A + A \rightarrow 0 \text{ on a Single Site} \]

Master equation:
\[
\frac{d}{dt} P(n, t) = \lambda \left[(n + 2)(n + 1)P(n + 2, t) - n(n - 1)P(n, t) \right]
\]

Multiply by \(|n\rangle\) and sum over \(n\):
\[
\frac{d}{dt} |\phi(t)\rangle = \lambda \sum_n P(n+2, t) (n + 2)(n + 1)|n\rangle - \lambda \sum_n P(n, t) n(n - 1)|n\rangle
\]
\[
= \lambda \sum_n P(n + 2, t) \hat{a}^2 |n + 2\rangle - \lambda \sum_n P(n, t) \hat{a}^{\dagger 2} \hat{a}^2 |n\rangle
\]
\[
= \lambda (\hat{a}^2 - \hat{a}^{\dagger 2} a^2) \sum_n P(n, t) |n\rangle
\]
\[
= \lambda (1 - \hat{a}^{\dagger 2}) \hat{a}^2 |\phi(t)\rangle = -\hat{H} |\phi(t)\rangle
\]
Hop from Site 1 to Site 2

Master Equation

\[\frac{d}{dt} P(n_1, n_2, t) = \Gamma \left[(n_1+1)P(n_1+1, n_2-1, t) - n_1 P(n_1, n_2, t) \right] \]

Multiply by \(|n_1, n_2\rangle\) and sum over \(n_1\) and \(n_2\):

\[\frac{d}{dt} |\phi(t)\rangle = \Gamma \sum_{n_1, n_2} P(n_1+1, n_2-1, t) (n_1+1)|n_1, n_2\rangle \]

\[- \Gamma \sum_{n_1, n_2} P(n_1, n_2, t) n_1|n_1, n_2\rangle \]

\[= \Gamma \sum_{n_1, n_2} P(n_1+1, n_2-1, t) \hat{a}_2^\dagger \hat{a}_1 |n_1+1, n_2-1\rangle \]

\[- \Gamma \sum_{n_1, n_2} P(n_1, n_2, t) \hat{a}_1^\dagger \hat{a}_1 |n_1, n_2\rangle \]

\[= \Gamma (\hat{a}_2^\dagger - \hat{a}_1^\dagger) \hat{a}_1 |\phi(t)\rangle \]
Diffusion

- Hop from site 1 to site 2:
 \[\hat{H}_{1\rightarrow 2} = \Gamma (\hat{a}^\dagger_1 - \hat{a}^\dagger_2) a_1 \]

- Allow for the reverse hop with the same rate:
 \[\hat{H}_{1\leftrightarrow 2} = \Gamma (\hat{a}^\dagger_1 - \hat{a}^\dagger_2)(\hat{a}_1 - \hat{a}_2) \]

- For hops between all neighboring lattice sites:
 \[\hat{H}_D = \frac{D}{(\Delta x)^2} \sum_{\langle i,j \rangle} (\hat{a}^\dagger_i - \hat{a}^\dagger_j)(\hat{a}_i - \hat{a}_j) \]
With two species reactions, such as $A + B \rightarrow 0$ reaction, the master equation is defined in terms of A-particle and B-particle occupation numbers

$$P(\{m\}, \{n\}, t)$$

For the Doi representation, we introduce distinct creation and annihilation operators for each species: $\hat{a}_i, \hat{a}^\dagger_i, \hat{b}_i, \text{ and } \hat{b}^\dagger_i$, and define state

$$|\phi(t)\rangle = \sum_{\{m\}, \{n\}} P(\{m\}, \{n\}, t) \prod_i \hat{a}^\dagger_{mi} \hat{b}^\dagger_{ni} |0\rangle$$
Each process contributes two terms to \hat{H}, of the form

$$(\text{rate}) \left[(\text{reactants}) - (\text{reaction}) \right]$$

$(\text{reactants}) = \text{creation and annihilation operator for each reactant, normal ordered}$

$(\text{reaction}) = \text{annihilation operator for each reactant, creation operator for each product, normal ordered}$

Examples:

- $A + A \rightarrow 0 \quad \lambda[\hat{a}^\dagger 2 \hat{a}^2 - \hat{a}^2]$
 $A + A \rightarrow A \quad \lambda[\hat{a}^\dagger 2 \hat{a}^2 - \hat{a}^\dagger \hat{a}^2]$
- $A \rightarrow A + A \quad \lambda[\hat{a}^\dagger \hat{a} - \hat{a}^\dagger 2 \hat{a}]$
 $A + B \rightarrow C \quad \lambda[\hat{a}^\dagger \hat{b}^\dagger \hat{a} \hat{b} - \hat{c}^\dagger \hat{a} \hat{b}]$
- Hop $1 \rightarrow 2 \quad \Gamma[\hat{a}_1^\dagger a_1 - \hat{a}_2^\dagger a_1]
For our classical particle system, averages are given by

$$\langle A(t) \rangle = \sum_{\{n\}} A(\{n\}) \ P(\{n\}, t)$$

To map this to the Doi representation, we need a projection state

$$\langle \mathcal{P}| = \langle 0|e^{\sum_i \hat{a}_i}, \text{ which has properties}$$

$$\langle \mathcal{P}|0\rangle = 1 \quad \langle \mathcal{P}|\hat{a}_i^\dagger \rangle = \langle \mathcal{P}| \Rightarrow \langle \mathcal{P}|n\rangle = 1$$

Then, for the operator $\hat{A} = A(\{n_i \rightarrow \hat{a}_i^\dagger \hat{a}_i\})$ we get

$$\langle A(t) \rangle = \langle \mathcal{P}|\hat{A}|\phi(t)\rangle = \langle \mathcal{P}|\hat{A} e^{-\hat{H}t}|\phi(0)\rangle$$

Note: for Poisson initial conditions, $|\phi(0)\rangle = \prod_i e^{-n_0+n_0\hat{a}_i^\dagger}|0\rangle$
Probability Conservation

Check Normalization

For some initial state \(P(\{n\}, 0) \) we average the identity operator:

\[
\langle \mathcal{P} | \hat{1} | \phi(0) \rangle = \langle \mathcal{P} | \sum_{\{n\}} P(\{n\}, 0) | \{n\} \rangle = \sum_{\{n\}} P(\{n\}, 0) = 1 \; \checkmark
\]

Check Probability Conservation

What is the condition on \(\hat{H} \)? We need

\[
1 = \langle \mathcal{P} | \hat{1} e^{-\hat{H}t} | \phi(0) \rangle = \langle \mathcal{P} | (1 - \hat{H}t + \frac{1}{2} t^2 \hat{H}^2 - \ldots) | \phi(0) \rangle
\]

for all \(t \), so we require \(\langle \mathcal{P} | \hat{H} = 0 \). Equivalently, \(\hat{H} \to 0 \) as \(\hat{a}_i^\dagger \to 1 \).

Note: \(\hat{H} \) need not be hermitian!
Field Theory Approach to Diffusion-Limited Reactions:
1. Models and Mappings

Master Equation for Lattice Models

Doi Representation

Mapping to Field Theory
The coherent state \(|\phi\rangle = \exp(-\frac{1}{2}|\phi|^2 + \phi a^\dagger)|0\rangle \) with complex \(\phi \) has properties

\[
\hat{a}|\phi\rangle = \phi|\phi\rangle, \quad \langle \phi|\hat{a}^\dagger = \langle \phi|\phi^* \]

and the overlap relation

\[
\langle \phi_1|\phi_2 \rangle = \exp(-\frac{1}{2}|\phi_1|^2 - \frac{1}{2}|\phi_2|^2 + \phi_1^*\phi_2) \]

Can construct a resolution of the identity operator

\[
\hat{1} = \sum_n \frac{1}{n!}|n\rangle\langle n| \]
Coherent States

The coherent state $|\phi\rangle = \exp(-\frac{1}{2}|\phi|^2 + \phi a^\dagger)|0\rangle$ with complex ϕ has properties

$$\hat{a}|\phi\rangle = \phi|\phi\rangle, \quad \langle \phi|\hat{a}^\dagger = \langle \phi|\phi^*$$

and the overlap relation

$$\langle \phi_1|\phi_2\rangle = \exp(-\frac{1}{2}|\phi_1|^2 - \frac{1}{2}|\phi_2|^2 + \phi_1^*\phi_2)$$

Can construct a resolution of the identity operator

$$\hat{1} = \sum_n \frac{1}{n!}|n\rangle\langle n| = \sum_{m,n} \frac{1}{n!}|n\rangle\langle m|\delta_{mn} = \int \frac{d^2\phi}{\pi} |\phi\rangle\langle \phi|$$

by use of

$$\delta_{mn} = \frac{1}{m!\pi} \int \phi^m\phi^* n e^{-|\phi|^2} d^2\phi$$
Given $\hat{H}(\hat{a}_i^\dagger, \hat{a}_i)$, take formal solution $|\phi(t)\rangle = e^{-\hat{H}t}|\phi(0)\rangle$ and divide time t into a number of small increments Δt via

$$e^{-\hat{H}t} = \exp(-\hat{H}\Delta t)^{t/\Delta t}$$

Insert $\hat{1} = \int \frac{d^2\phi}{\pi} |\phi\rangle\langle\phi|$ between each successive time step:

$$\int \cdots |\phi_{t+\Delta t}\rangle\langle\phi_{t+\Delta t}|e^{-\hat{H}\Delta t}|\phi_{t}\rangle\langle\phi_{t}|e^{-\hat{H}\Delta t}|\phi_{t-\Delta t}\rangle\langle\phi_{t-\Delta t}| \cdots$$
Coherent State Representation

Given $\hat{H}(\hat{a}^\dagger_i, \hat{a}_i)$, take formal solution $|\phi(t)\rangle = e^{-\hat{H}t}|\phi(0)\rangle$ and divide time t into a number of small increments Δt via

$$e^{-\hat{H}t} = \exp(-\hat{H} \Delta t)^{t/\Delta t}$$

Insert $\hat{1} = \int \frac{d^2\phi}{\pi} |\phi\rangle \langle \phi|$ between each successive time step:

$$\int \cdots |\phi_{t+\Delta t}\rangle \langle \phi_{t+\Delta t}| e^{-\hat{H} \Delta t} |\phi_t\rangle \langle \phi_t| e^{-\hat{H} \Delta t} |\phi_{t-\Delta t}\rangle \langle \phi_{t-\Delta t}| \cdots$$

Now focus on a single matrix element:

$$\langle \phi_t| e^{-\hat{H} \Delta t} |\phi_{t-\Delta t}\rangle = e^{-H(\phi^*_t,\phi_{t-\Delta t})\Delta t} \langle \phi_t| \phi_{t-\Delta t}\rangle$$

$$\simeq e^{-H(\phi^*_t,\phi_t)\Delta t} e^{\phi^*_t \phi_{t-\Delta t} - \frac{1}{2}|\phi_t|^2 - \frac{1}{2}|\phi_{t-\Delta t}|^2}$$

$$\simeq e^{-H(\phi^*_t,\phi_t)\Delta t} e^{-\phi^*_t \partial_t \phi_t \Delta t}$$
Path Integral

String together many time slices in the limit $\Delta t \to 0$ and we get

$$e^{-\hat{H}t} \to \int \mathcal{D}\phi^* \mathcal{D}\phi \exp \left(- \int_0^t dt' [\phi^* \partial_{t'} \phi + H(\phi^*, \phi)] \right)$$

where $\prod_j \left(\frac{d^2 \phi_j}{\pi} \right) \to \mathcal{D}\phi^* \mathcal{D}\phi$
String together many time slices in the limit $\Delta t \to 0$ and we get

$$e^{-\hat{H}t} \to \int \mathcal{D}\phi^* \mathcal{D}\phi \exp \left(-\int_0^t dt' [\phi^* \partial_{t'} \phi + H(\phi^*, \phi)] \right)$$

where $\prod_j \left(\frac{d^2 \phi_j}{\pi} \right) \to \mathcal{D}\phi^* \mathcal{D}\phi$

Generalize to multiple lattice sites:

$$e^{-\hat{H}t} \to \int \prod_j (\mathcal{D}\phi_j^* \mathcal{D}\phi_j) e^{-S[\{\phi_j^*\}, \{\phi_j\}]}$$

with

$$S = \int_0^t \sum_j dt' \left[\phi_j^* \partial_{t'} \phi_j + H(\{\phi_j^*\}, \{\phi_j\}) \right]$$
\[\langle A(t) \rangle = \langle \mathcal{P} | \hat{A} e^{-\hat{H}t} | \phi(0) \rangle = \mathcal{N}^{-1} \int \prod_j (\mathcal{D}\phi_j^* \mathcal{D}\phi_j) A(\phi(t)) e^{-S[\phi^*, \phi]} \]

with action \(S \) given by

\[S = \sum_i \left\{ -\phi_i(t) + \int_0^t dt' \left[\phi_i^* \partial_{t'} \phi_i + H(\{\phi_i^*\}, \{\phi_i\}) \right] - n_0 \phi_i^*(0) \right\} \]

Can eliminate projection state term by field shift \(\phi^* \rightarrow 1 + \tilde{\phi} \):

\[\int_0^t (1 + \tilde{\phi}) \partial_{t'} \phi \, dt' = \phi(t) - \phi(0) + \int_0^t \tilde{\phi} \partial_t \phi \, dt' \]

which takes \(H \rightarrow H(\{1 + \tilde{\phi}_j\}, \{\phi_j\}) \)
Diffusion

\[S_D = \int dt \left[\sum_i \tilde{\phi}_i \partial_t \phi_i + \frac{D}{\Delta x^2} \sum_{\langle ij \rangle} (\tilde{\phi}_i - \tilde{\phi}_j)(\phi_i - \phi_j) \right] - \sum_{i} n_0 \tilde{\phi}_i(0) \]

\[= \int dt \; d^d x \left[\tilde{\phi} \, \partial_t \phi + D \nabla \tilde{\phi} \cdot \nabla \phi - n_0 \tilde{\phi} \, \delta(t) \right] \]

\[= \int dt \; d^d x \left[\tilde{\phi} (\partial_t - D \nabla^2) \phi - n_0 \tilde{\phi} \, \delta(t) \right] \]

Action is linear in \(\tilde{\phi} \). Extremum:

\[\frac{\delta S_D}{\delta \tilde{\phi}} = \partial_t \phi - D \nabla^2 \phi - n_0 \delta(t) = 0 \]

is the plain old diffusion equation: \(\partial_t \phi = D \nabla^2 \phi + n_0 \delta(t) \)
The reaction part of the hamiltonian is

\[H_{\text{reac}} = -\lambda \sum_i (1 - \phi_i^* \phi_i^2) \phi_i^2 \rightarrow \int d^d x (2 \lambda_0 \phi \phi^2 + \lambda_0 \phi^2 \phi^2) \]

with the field shift \(\phi^* \rightarrow 1 + \tilde{\phi} \) and \(\lambda_0 = \lambda/\Delta x^d \).

Thus the complete \(A + A \rightarrow 0 \) action is

\[S = \int d^d x dt \left[\tilde{\phi} (\partial_t - D \nabla^2) \phi + 2 \lambda_0 \phi \phi^2 + \lambda_0 \phi^2 \phi^2 - n_0 \phi \delta(t) \right] \]

Now we’re ready to do some calculations!
Can make the action linear in $\tilde{\phi}$ via an auxiliary field η:

$$e^{-\lambda_0 \tilde{\phi}^2 \phi} \propto \int d\eta \exp\left\{ -\frac{1}{2} \eta^2 + i\eta \sqrt{2\lambda_0} \tilde{\phi} \phi \right\}$$

resulting in averages

$$\int \mathcal{D}\eta e^{-\eta^2/2} \int \mathcal{D}\phi \int \mathcal{D}\tilde{\phi} e^{-\int \tilde{\phi}(\partial_t - D\nabla^2)\phi + 2\lambda_0 \tilde{\phi}^2 + i\eta \sqrt{2\lambda_0} \tilde{\phi} \phi}$$

The $\tilde{\phi}$ integration creates a δ-function that enforces

$$\partial_t\phi = D\nabla^2\phi - 2\lambda_0 \phi^2 + i\sqrt{2\lambda_0} \phi \eta$$

A stochastic reaction-diffusion equation with multiplicative noise
Can make the action linear in $\tilde{\phi}$ via an auxiliary field η:

$$e^{-\lambda_0 \tilde{\phi}^2 \phi^2} \propto \int d\eta \exp \left\{ -\frac{1}{2} \eta^2 + i \eta \sqrt{2\lambda_0} \tilde{\phi} \phi \right\}$$

resulting in averages

$$\int \mathcal{D}\eta \, e^{-\eta^2/2} \int \mathcal{D}\phi \int \mathcal{D}\tilde{\phi} \, e^{-\int \tilde{\phi} (\partial_t - D \nabla^2) \phi + 2\lambda_0 \tilde{\phi} \phi^2 + i \eta \sqrt{2\lambda_0} \tilde{\phi} \phi}$$

The $\tilde{\phi}$ integration creates a δ-function that enforces

$$\partial_t \phi = D \nabla^2 \phi - 2\lambda_0 \phi^2 + i \sqrt{2\lambda_0} \phi \eta$$

A stochastic reaction-diffusion equation with multiplicative noise that is complex!?
Mapping to Doi representation simplifies the master equation by getting rid of pesky factors involving n.

This Fock space description natural for identical particles acting independently, not restricted to quantum mechanics.

Fock space dynamics can be converted to a field theory without resorting to Langevin-type phenomenology.

Technique can easily include multiple species, long-range hops, birth/death processes, convected fields.

Mechanical forces not so easily included. \hat{H} is not an energy but rather rates.

SPDE’s are fraught with peril!
Fock space representation:

Reaction diffusion field theory (Bargmann representation):

- L. Peliti, *J. Physique* 46, 1469 (1985)

General path integral techniques:

Reaction diffusion field theory (Coherent state representation):

1. **Diffusion equation:**
 (a) Show that the diffusion master equation is equivalent to

 \[
 \frac{d}{dt} \langle n_i \rangle = \frac{D}{\Delta x^2} \sum_j (\langle n_j \rangle - \langle n_i \rangle)
 \]

 where the sum on j runs over nearest neighbors of site i.

 (b) Show that $\rho(x, t) = \langle n_i \rangle$ with $x = i \Delta x$ satisfies $\partial_t \rho = D \partial_{xx}^2 \rho$ as $\Delta x \to 0$.

 (c) Generalize the result to a d-dimensional hypercubic lattice.

2. **Consider the decay $A \to 0$ on a single lattice site.** Map the problem from the master equation to the Doi Hamiltonian to the shifted field theory. Show that the $\mathcal{D}\tilde{\phi}$ integration yields the expected result

 \[
 \partial_t \phi = -\lambda \phi + n_0 \delta(t)
 \]
3. Write down the Doi hamiltonian for the reversible reaction \(\ell A + mB \rightleftharpoons nC \), with rates \(\lambda \) for the forward reaction and \(\mu \) for the reverse reaction. Here \(\ell A \), for example, means \(\ell \) \(A \) particles are required for the reaction.

4. Coherent states:
 (a) Determine the coefficients \(C_n \) in the expansion of the coherent state \(|\phi\rangle = \sum_n C_n |n\rangle \)
 (b) Confirm the identity
 \[
 \delta_{mn} = \frac{1}{m!\pi} \int \phi^* m \phi^* n e^{-|\phi|^2} \, d^2\phi
 \]
 (c) Use the results from (a) and (b) confirm \(\hat{1} = \int \frac{d^2\phi}{\pi} |\phi\rangle \langle \phi| \). Note that \(d^2\phi = d(\text{Re}\phi) \, d(\text{Im}\phi) \).