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Field Theory Approach to Diffusion-Limited Reactions

1. Models and Mappings

How to turn stochastic particle models into a field theory,
with no phenomenology.

2. Single-Species Annihilation
Field theoretic renormalization group calculation for
A+ A — 0 reaction in gory detail.

3. Applications

Higher order reactions, disorder, Lévy flights, two-species
reactions, coupled reactions.

4. Active to Absorbing State Transitions

Directed percolation, branching and annihilating random
walks, and all that.



Field Theory Approach to Diffusion-Limited Reactions:

2. Single-Species Annihilation

Critical Behavior in Diffusion-Limited Reactions



The A+ A — 0 Annihilation Reaction

» Rate equation: assume particles | |
remain mixed, then d,a = —\a? ‘_,
=a~1/M

» For d < 2 random walks recurrent: a
particle suriving to time ¢ sweeps out a
volume t%/2,

=an~t

—d/2

Anti-correlations cause slower than rate equation decay for d < 2.

From exact solutions, RG calculations, and simulations we know

Ct1 for d > 2 with universal
o~ %1%: for d = 2 amplitudes for d < 2!
Ag(Dt)=%% ford < 2 Eg A =1/V8n.



Origin of Universality & Upper Critical Dimension

Asymptotically, the spatial separation between surviving particles
becomes large.

For d < 2, a pair of random walkers in a spatial continuum will
eventually meet.

» Reaction rate depends on the universal statistics of random
walks bringing particles near to each other.

» Lattice effects, capture radius, or reaction probability not
relevant

For d > 2, point particles undergoing random walks never meet.

» Particles rely on lattice or finite capture radius in order to
react

» Effective reaction rate will always depend on these details.



Field Theory Approach to Diffusion-Limited Reactions:

2. Single-Species Annihilation

Diagrammatic Expansion



A+ A — 0 Field Theory

Action:

5= [ dtadt [3(0 - DV)o+ 20036 + I - mad ()
difFEgion } reagon i.c

Averages:

(A(g)) = N1 / DD A(p) e 51081 N = / DG Dp 51991

Diffusion part gives gaussian integrals, which is all we know how to
do. So we treat the interaction terms perturbatively

> S =S5p+ Sint

> (A) =N"! [DpDp Ae S e = (Ae )



Expansion of Interactions

S = [ ot 220307 + d?6? — nod 8(0)

e =1 — Sy + $8%, —

int

:(1—2)\0/(£1¢%+(2)\ 2(]32(25%4—)
«(1-n [t + 4 [[ B ga-.)
X (1+n0/ &1(0)4-;713// (%1(0)({52(0)-}-...)




Wick’s Theorem

Averages against a gaussian weight equals the product of paired
averages, summed over all possible pairings.

Ordinary Gaussian Example:

(22) = /Oo Ppo(x)dr =0 = () = 3(a2)? = 304

—00

because

(D= Trll e =3¢

Field Theory Example:

($1020304) , = ($103) (D204, + ($104) , (D203)



(or(82 [aust [t ) (-3 [ 362) (3 [[[ dnnn))
5
7 6./..i
.—..\0

~C%

« —°
— .
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Fourier transform fields: ¢(k,w) = [ d%x dt e~ &>Tit g(x 1),
action becomes

i dw -
Sp — / (;l:)d;lﬂ H(—k, —w) (—iw + D) bk, w)

Propagator is Green's function for diffusion:

- 1
Gp(x.t) = (6(x.1)6(0,0), = Gpkw)=———Fm
Back into the time domain: o)
dw e*iwt
Gpkt)= | — ———— N
p(k?) /271' —iw + Dk? 7
—iDk?
= 0(t) e DK
e—©2/(4Dt)

= GD(X7t>0):W
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Feynman rules — Fourier Space

» only allow diagrams with all interaction vertices connected,
earlier ¢ to later ¢ (time flows left)

—2)\0 —)\ un

<K —

—Dk?t

» each vertex gets a factor:

» vertices connected by propagators Gp = e

1/
k=0 . k=
» k conserved at each vertex: =
k =
k/

> integrate vertices over time, integrate internal k over f

(2m)

» symmetry factors: {>< versus d
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Example 1

Let's practice a bit (recall Gp = e~ PF*1)

-2\ : no
| | n
| , v 10

t t1 0

t
/ dt1 Gp(0,t — t1)(~2X0)Gp (0, t1)*nd
0

t
= —2)\071%/ dtl = —2)\0ngt
0

... and you thought this would be hard!
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Example 2
k . .
%>0<: no okay, that was a little bit hard
! I I no

I ' _k ' 1
t to t1 0

t ta ddk
/0 dtQ/O dtl/w GD(Oat_tQ)(_Q)‘O)

X QGD(k,tQ — tl)GD(—k,tQ — tl)(—)\o)GD(O,tl)2ng

t
2 dtl d k —2Dk2 t2 t1)

= 4)\0710 dt2

t 2,2 2—d/2
_ANgng / dto / Yt (tg—ty) 2 = | L0200t /
(8wD)d/2 (87 D)4/2 (2 — d)(4 — d)
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Diagrammatic Expansion for the Density

Diagrams have a physical interpretation, in terms of the history of
a surviving particle at time ¢
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Sum of All Tree Diagrams

Dyson Equation

—o=+<+%+

t
dree(t) = 110 + / dtr Gp(0,¢ — £1)(=220)agree(1)?
0

gives
d .
C;ttree = —2/\0afree with i.c. atree(()) =ng
Rate Equation! With solutio (t) 1o
e ation! ith solution: a - v
’ - tree 1+ 2/\0n0t
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Field Theory Approach to Diffusion-Limited Reactions:

2. Single-Species Annihilation

Renormalization of Field Theory
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Calculate One-Loop Corrections
i 1—d/2
+ 4©< = —2)\0n%t |:1 - Cd)\olt)m]

For d > 2

> exponent negative, loop correction blows up for ¢ small (UV)
> not a problem since it is regulated ¢~4/2 — (422 4 )1-d/2

» Loops “renormalize” interaction vertex a finite, nonuniversal
amount, giving ¢ ~ —2\> <  Rate equation!

For d < 2
> exponent positive, loop correction blows up for ¢ large (IR).

» “Bare” expansion is worthless! Need renormalization group.

d. = 2 is the upper critical dimension.
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The Renormalization Group Method is . ..

» A method for curing divergences (our long-time problem)
» A method for finding the unique continuum limit

» The systematic removal of short-distance degrees of freedom
resulting in an effective theory for the long-distance degrees of
freedom (Wilson)

» Useful near criticality, where the long-distance physics exhibits
scale invariance

» Generally only possible perturbatively, so a small parameter is
needed

» A resummation of an apparently divergent series to give a
convergent series
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Renormalization Group Recipe

1. identify primitive divergences via power counting

2. use a normalization point to define renormalized couplings
(and renormalized fields, but we won't need that here)

3. exchange the bare expansion for a renormalized expansion

4. use the RG flow equations to let renormalized couplings flow
to their fixed points

5. treat yourself to some Ben and Jerry's
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Primitive Divergences

We need to identify which
subgraphs contain IR divergences
for d < 2:

Power counting shows that only
subgraphs with two incoming lines
are primitively divergent.

Our interactions cannot increase the number of lines, so

» there are no diagrams that “dress” the propagator
= no field renormalization required

» there are no interactions with zero lines coming out
= the only two subgraphs needing renormalization are
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Vertex Function Sum

A12) and X\(22) contain the same diagrams:

ST TR e e
xR OO OO

They renormalize identically because of probability conservation
and they can be summed exactly!

t
A2 (£0) = \od(t) — A2I(t) + Ag/ dty I(t —t1)I(ty)

to
A/}@/‘ﬁﬂt—@(@—mum+

with loop integral I(t) = 2(87Dt)~%2. Now Laplace transform:

M
1+ )\0[(3)

A2 (5) = Ao — A2I(s) + NI(s)? — AgI(s)> +--- =
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Renormalized Couplings

Normalization point: choose an arbitrary time ¢, (to avoid IR)

» Define dimensionless bare coupling _Aoto
go, Which is invariant under rescaling: go = (Dtg)?/2

» Define the renormalized coupling gr via

)\(2’2) (S) to )\()to 1
s=t !

= (Do) izt (D)2 [T+ X0I(s)
go * (Sﬂ)d/Q
=—"——— whereg" = ————~ ~27(2—-d
1+ go/g" 9= 3ra—ap "2
» Invert to get
9gR 9% | 9k
gozizg}%‘i‘i‘i_i
1 —gr/g* g° g%
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Field Theory Approach to Diffusion-Limited Reactions:

2. Single-Species Annihilation

RG Equation and Observables
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The B Function

Since Ao = A\o(gr, D, to), we can write the density
a(tv no, Da >‘0) = a’(ta no, D7 IR, tO)

But our choice of ¢y is arbitrary, so

da 0 0
0=tog, = [’anto ‘f@@R)agR}“

where

_ (dgr  (2-d 02— d/2)
Blgr) = —to (8t0> b =- <2>9R + Wﬂ}%

B d<?2 / B d>2
N—7 «

I
g* 8R 8R
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From dimensional analysis

alt,no, D, gr,to) = (Dto) "2 f (t/to, no(Dto)"?, gr)

and so
JOa 40 nd ],
“Otol,, L 2 ot 2 ong
Oa Oa

Recall that toa—to = 5(g3)@.

Combining these gives the RG equation

[3 noda

0 d
ta — 787710 + 5(93)% + 2:| a(tanﬂngvtO) =0
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Method of Characteristics

0 nod 0 0 d
b — — 4+ —|a(t to) =0
[ 5 2 ong +5(9R)89R + 2] a(t,no, gr; to)
Make a total derivative d/dt via the “running couplings” 7y and ggr
i
% = —3f0  withic. 7io(t) = no
dg - o -
t% =pB(gr)  withic. gr(t)=gr

Solutions:

- o 4d)2 ~ — 9" —9r
fio(t/b) = nob¥ gr(t/b) =g <1+9Rb1_d/g>

For large b we have gr(b) — ¢* (good), but g — oo (bad).
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Solution to RG Equation

a(ta nOagRatO) = b_d/2 a<t/b? nObd/27 gR(b)? tO)

~ (t/tg) 42 a<t0, no(t/t0)?, g7, to)

» Compares the density at time ¢ to an earlier density with
rescaled size and renormalized coupling.

» We can safely calculate the right-hand side in bare
perturbation theory, since it is an early time expansion

» Recipe: In bare expansion,

» sub in ng — no(t/to)d/g, Jgr — g* ~ 0(2 — d), and t — to
» multiply by (/to)~%2.
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€ = 2 — d Expansion — Tree Level

> gr — g* = 2me + O(€?) is a small parameter

» But ng — ng(t/to)%? flows to infinity, so we can't use
perturbation theory unless we can re-sum to all orders of ng.

Tree Diagrams

(0) no 1 1
a = — = 1
1+ 2X\onot 2Xot  2go(Dto) 4%ty 't

Recall go = gr + O(g%), so

—d/2
o _ _ (t/t) L O = 1 DO-Y2 4 O(°
a QgR(Dto)d/ztalto (9r) 29*( ) (9r)

We find expected time dependence, and a universal amplitude. But

what about the other diagrams?
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€ = 2 — d Expansion — Loops

Topology: diagrams of order n{)/\’g have n =k + 1 — j loops,
which implies the sum of all n-loop diagrams has the form

a(n) (t,no, )‘0) = )‘gilf(ta )‘OnO)
Calculation: infinite sums of diagrams with n loops are order

O(1) in the ng — oo limit. (Shown on the next slide. . ..)

Recall that the t-dependence comes from ng and the overall
=2 factor.

Conclusion: loop expansion gives a(™ ~ ¢g*("=1¢=d/2 to 4|
orders:

i+21n8ﬂ'—5+0() 1
4re 167 ¢ (Dt)d/2

~
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Sum of All n-Loop Diagrams

Define the tree-level response function:

G(k,ta, t1)er = F.T.(0(X2,t2)d(X1, t1))tree

This obeys a D : k /
is obeys a Dyson eq -~ LS

th
which yields .. L
2 14 2Agnotq 2 2( ) t1 2

G(k.to. t _ ,—Dk (te—t1) | = T 2207051 ~ p—DE=(t2—t1 “r

( e 1)tr € 14 2Agnoto c to
All loop diagrams can be
constructed from Gy, —e + —Q< +%
and Qiree .
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The (-function becomes d=2

p
Blon) = <0}
gr) = 167T9R
8r
Running coupling flows to zero as

47

gr(t/b) ~ —

Gn(t/D) ~

It's still a small parameter, so loop expansion still useful. But now
tree diagrams give asymptotic result:

1 1 1 lnt+0 1
a~ry —— ~ | — — -
2gr Dt 8t Dt Dt

Matches exact solution!
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Summary and Observations

> Whew!

» Reaction-diffusion field theory for decay processes yield
controlled RG calculations, relatively rare in nonequilibrium
(compare KPZ, Cahn-Hilliard)

» And can be renormalized to all orders in the loop expansion,
relatively rare anywhere!

» For d < 2, all orders of diagrams contribute to the t—d/2
decay, but the universal amplitude is obtained perturbatively

» RG calculation confirms exact results (for d = 2) and
demonstrates universality.
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Exercises

1. Loop integrals

a) Confirm that I(t) = 2(87Dt)~%2. Laplace transform this to
(a) p
find I(s).

(b) From the definitions of ggr, go, and g*, confirm
gr = go/(1+ go/g")

2. The sum of all 2-loop diagrams can be given by six “skeleton”
diagrams. One of these was given. Identify the other five.

3. Order of loop diagrams

(a) Confirm that diagrams of order \in} have n =k +1 —j
loops.

(b) Show that this implies that the sum of all n-loop diagrams has
the form A0 ' f(Aono).
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Exercises

4. Calculating the tree-level response function
(a) Show that the Dyson equation for the tree-level response
function gives

G(K, toty)y = ¢~ DK (t211)

ta
+ / dt’ e*DkQ(tth)(_2)\0)2atree(tl)G(k,t/,t1)t,

ty

(b) Plug in the hypothesis Gy, = e~ PF (t2=11) £(£, ;) and derive
a differential equation for f(ta,t1).

(c) Integrate this equation to confirm the result for Gy, quoted in
the talk.

36/36



	Critical Behavior in Diffusion-Limited Reactions
	Diagrammatic Expansion
	Renormalization of Field Theory
	RG Equation and Observables

