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Field Theory Approach to Diffusion-Limited Reactions

1. Models and Mappings

How to turn stochastic particle models into a field theory,
with no phenomenology.

2. Single-Species Annihilation

Field theoretic renormalization group calculation for
A+A→ 0 reaction in gory detail.

3. Applications

Higher order reactions, disorder, Lévy flights, two-species
reactions, coupled reactions.

4. Active to Absorbing State Transitions

Directed percolation, branching and annihilating random
walks, and all that.
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The A+ A→ 0 Annihilation Reaction

I Rate equation: assume particles
remain mixed, then ∂ta = −λa2

⇒ a ∼ 1/λt

I For d ≤ 2 random walks recurrent: a
particle suriving to time t sweeps out a
volume td/2,

⇒ a ∼ t−d/2

Anti-correlations cause slower than rate equation decay for d ≤ 2.

From exact solutions, RG calculations, and simulations we know

a ∼


Ct−1 for d > 2
1

8π
ln t
Dt for d = 2

Ad(Dt)−d/2 for d < 2

with universal
amplitudes for d ≤ 2!

E.g. A1 = 1/
√

8π.

4 / 36



Origin of Universality & Upper Critical Dimension dc = 2

Asymptotically, the spatial separation between surviving particles
becomes large.

For d ≤ 2, a pair of random walkers in a spatial continuum will
eventually meet.

I Reaction rate depends on the universal statistics of random
walks bringing particles near to each other.

I Lattice effects, capture radius, or reaction probability not
relevant

For d > 2, point particles undergoing random walks never meet.

I Particles rely on lattice or finite capture radius in order to
react

I Effective reaction rate will always depend on these details.
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A+ A→ 0 Field Theory

Action:

S =
∫
ddx dt

[
φ̃(∂t −D∇2)φ︸ ︷︷ ︸

diffusion

+ 2λ0φ̃φ
2 + λ0φ̃

2φ2︸ ︷︷ ︸
reaction

−n0φ̃ δ(t)︸ ︷︷ ︸
i.c.

]
Averages:

〈A(φ)〉 = N−1

∫
Dφ̃DφA(φ) e−S[φ̃,φ] N =

∫
Dφ̃Dφ e−S[φ̃,φ]

Diffusion part gives gaussian integrals, which is all we know how to
do. So we treat the interaction terms perturbatively

I S = SD + Sint

I 〈A〉 = N−1
∫ Dφ̃Dφ Ae−Sint e−SD = 〈Ae−Sint〉D
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Expansion of Interactions

Sint =
∫
ddx dt

[
2λ0φ̃φ

2 + λ0φ̃
2φ2 − n0φ̃ δ(t)

]

e−Sint = 1− Sint + 1
2S

2
int − . . .

=
(

1− 2λ0

∫
φ̃1φ

2
1 + (2λ0)2

2

∫∫
φ̃1φ

2
1 φ̃2φ

2
2 + . . .

)
×
(

1− λ0

∫
φ̃2

1φ
2
1 + λ2

0
2

∫∫
φ̃2

1φ
2
1 φ̃

2
2 φ

2
2 − . . .

)
×
(

1 + n0

∫ ′
φ̃1(0) +

1
2
n2

0

∫ ′∫ ′
φ̃1(0)φ̃2(0) + . . .

)
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Wick’s Theorem

Averages against a gaussian weight equals the product of paired
averages, summed over all possible pairings.

Ordinary Gaussian Example:

〈x2〉 =
∫ ∞
−∞

x2 pσ(x) dx = σ2 ⇒ 〈x4〉 = 3〈x2〉2 = 3σ4

because

)
2

3(+ += =

Field Theory Example:

〈φ1φ2φ̃3φ̃4〉D = 〈φ1φ̃3〉D〈φ2φ̃4〉D + 〈φ1φ̃4〉D〈φ2φ̃3〉D
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Feynman Diagrams

〈
φ7

(
(−2λ0)2

2

∫
φ̃6φ

2
6

∫
φ̃5φ

2
5

)(
−λ0

∫
φ̃2

4φ
2
4

)(
n3

0
3!

∫ ′∫ ′∫ ′
φ̃3 φ̃2 φ̃1

)〉

1

2

3
4

5

67

1

2

3
4

5

67
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Propagator

Fourier transform fields: φ(k, ω) =
∫
ddx dt e−ik·x+iωt φ(x, t),

action becomes

SD =
∫

ddk

(2π)d
dω

2π
φ̃(−k,−ω) (−iω +Dk2)φ(k, ω)

Propagator is Green’s function for diffusion:

GD(x, t) = 〈φ(x, t)φ̃(0, 0)〉D ⇒ GD(k, ω) =
1

−iω +Dk2

Back into the time domain:

GD(k, t) =
∫
dω

2π
e−iωt

−iω +Dk2

= θ(t) e−Dk
2t

⇒ GD(x, t > 0) = e−x2/(4Dt)

(4πDt)d/2

ω

−iDk
2
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Feynman rules — Fourier Space

I only allow diagrams with all interaction vertices connected,
earlier φ̃ to later φ (time flows left)

I each vertex gets a factor:
n0−λ0−2λ0

I vertices connected by propagators GD = e−Dk
2t

I k conserved at each vertex:
k = 0

k = 0
k = 0

−k′

k′

I integrate vertices over time, integrate internal k over
∫

ddk
(2π)d

I symmetry factors: versus
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Example 1

Let’s practice a bit (recall GD = e−Dk
2t)

t

−2λ0

0t1

n0

n0

∫ t

0
dt1GD(0, t− t1)(−2λ0)GD(0, t1)2n2

0

= −2λ0n
2
0

∫ t

0
dt1 = −2λ0n

2
0t

. . . and you thought this would be hard!
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Example 2

−λ0

0t1t2t

k

−k
n0

n0−2λ0 okay, that was a little bit hard

∫ t

0
dt2

∫ t2

0
dt1

∫
ddk

(2π)d
GD(0, t− t2)(−2λ0)

× 2GD(k, t2 − t1)GD(−k, t2 − t1)(−λ0)GD(0, t1)2n2
0

= 4λ2
0n

2
0

∫ t

0
dt2

∫ t2

0
dt1

∫
ddk

(2π)d
e−2Dk2(t2−t1)

=
4λ2

0n
2
0

(8πD)d/2

∫ t

0
dt2

∫ t2

0
dt1(t2−t1)−d/2 =

16λ2
0n

2
0

(8πD)d/2
t2−d/2

(2− d)(4− d)
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Diagrammatic Expansion for the Density

+ + + . . .

+ + + + . . .

+

.
.

.

+ . . .

〈φ〉 =

Diagrams have a physical interpretation, in terms of the history of
a surviving particle at time t
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Sum of All Tree Diagrams

Dyson Equation

+ +
. . .=

+=

+

atree(t) = n0 +
∫ t

0
dt1GD(0, t− t1)(−2λ0)atree(t1)2

gives

datree

dt
= −2λ0a

2
tree with i.c. atree(0) = n0

Rate Equation! With solution: atree(t) =
n0

1 + 2λ0n0t
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Calculate One-Loop Corrections

+ = −2λ0n
2
0t

[
1− cdλ0t

1−d/2

Dd/2

]
For d > 2

I exponent negative, loop correction blows up for t small (UV)

I not a problem since it is regulated t1−d/2 → (∆x2

D + t)1−d/2

I Loops “renormalize” interaction vertex a finite, nonuniversal
amount, giving φ̇ ∼ −2λeffφ

2 ⇐ Rate equation!

For d < 2

I exponent positive, loop correction blows up for t large (IR).

I “Bare” expansion is worthless! Need renormalization group.

dc = 2 is the upper critical dimension.
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The Renormalization Group Method is . . .

I A method for curing divergences (our long-time problem)

I A method for finding the unique continuum limit

I The systematic removal of short-distance degrees of freedom
resulting in an effective theory for the long-distance degrees of
freedom (Wilson)

I Useful near criticality, where the long-distance physics exhibits
scale invariance

I Generally only possible perturbatively, so a small parameter is
needed

I A resummation of an apparently divergent series to give a
convergent series
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Renormalization Group Recipe

1. identify primitive divergences via power counting

2. use a normalization point to define renormalized couplings
(and renormalized fields, but we won’t need that here)

3. exchange the bare expansion for a renormalized expansion

4. use the RG flow equations to let renormalized couplings flow
to their fixed points

5. treat yourself to some Ben and Jerry’s
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Primitive Divergences

We need to identify which
subgraphs contain IR divergences
for d ≤ 2:

Power counting shows that only
subgraphs with two incoming lines
are primitively divergent.

Our interactions cannot increase the number of lines, so

I there are no diagrams that “dress” the propagator
⇒ no field renormalization required

I there are no interactions with zero lines coming out
⇒ the only two subgraphs needing renormalization are

λ(1,2) λ(2,2)
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Vertex Function Sum

λ(1,2) and λ(2,2) contain the same diagrams:

λ(2,2) = + + + + . . .

= + + + + . . .
λ(1,2)

They renormalize identically because of probability conservation
and they can be summed exactly!

λ(2,2)(t, 0) = λ0δ(t)− λ2
0I(t) + λ3

0

∫ t

0
dt1 I(t− t1)I(t1)

− λ4
0

∫ t

0
dt2

∫ t2

0
dt1 I(t− t2)I(t2 − t1)I(t1) + . . .

with loop integral I(t) = 2(8πDt)−d/2. Now Laplace transform:

λ(2,2)(s) = λ0 − λ2
0I(s) + λ3

0I(s)2 − λ4
0I(s)3 + · · · = λ0

1 + λ0I(s)
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Renormalized Couplings

Normalization point: choose an arbitrary time t0 (to avoid IR)

I Define dimensionless bare coupling
g0, which is invariant under rescaling:

g0 ≡ λ0t0

(Dt0)d/2

I Define the renormalized coupling gR via

gR ≡ λ(2,2)(s) t0
(Dt0)d/2

∣∣∣∣
s=t−1

0

=
λ0t0

(Dt0)d/2

[
1

1 + λ0I(s)

]
s=t−1

0

=
g0

1 + g0/g∗
where g∗ =

(8π)d/2

2 Γ(1− d/2)
∼ 2π(2− d)

I Invert to get

g0 =
gR

1− gR/g∗ = gR +
g2
R

g∗
+
g3
R

g∗2
. . .
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The β Function

Since λ0 = λ0(gR, D, t0), we can write the density

a(t, n0, D, λ0) = a(t, n0, D, gR, t0)

But our choice of t0 is arbitrary, so

0 = t0
da

dt0
=
[
t0
∂

∂t0
− β(gR)

∂

∂gR

]
a

where

β(gR) ≡ −t0
(
∂gR
∂t0

)
λ0,D

= −
(

2− d
2

)
gR +

Γ(2− d/2)
2(8π)d/2

g2
R

gRgRg*

β d >2β d<2
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RG Equation

From dimensional analysis

a(t, n0, D, gR, t0) = (Dt0)−d/2f
(
t/t0, n0(Dt0)d/2, gR

)
and so

t0
∂a

∂t0

∣∣∣∣
gR

=
[
−d

2
− t ∂

∂t
+
n0d

2
∂

∂n0

]
a

Recall that t0
∂a

∂t0
= β(gR)

∂a

∂gR
.

Combining these gives the RG equation[
t
∂

∂t
− n0d

2
∂

∂n0
+ β(gR)

∂

∂gR
+
d

2

]
a(t, n0, gR, t0) = 0
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Method of Characteristics

[
t
∂

∂t
− n0d

2
∂

∂n0
+ β(gR)

∂

∂gR
+
d

2

]
a(t, n0, gR, t0) = 0

Make a total derivative d/dt via the “running couplings” ñ0 and g̃R

t
dñ0

dt
= −d

2
ñ0 with i.c. ñ0(t) = n0

t
dg̃R
dt

= β(g̃R) with i.c. g̃R(t) = gR

Solutions:

ñ0(t/b) = n0b
d/2 g̃R(t/b) = g∗

(
1 +

g∗ − gR
gR b1−d/2

)
For large b we have g̃R(b)→ g∗ (good), but ñ0 →∞ (bad).
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Solution to RG Equation

a(t, n0, gR, t0) = b−d/2 a
(
t/b, n0b

d/2, g̃R(b), t0
)

∼ (t/t0)−d/2 a
(
t0, n0(t/t0)d/2, g∗, t0

)

I Compares the density at time t to an earlier density with
rescaled size and renormalized coupling.

I We can safely calculate the right-hand side in bare
perturbation theory, since it is an early time expansion

I Recipe: In bare expansion,

I sub in n0 → n0(t/t0)d/2, gR → g∗ ∼ O(2− d), and t→ t0

I multiply by (t/t0)−d/2.
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ε = 2− d Expansion — Tree Level

I gR → g∗ = 2πε+O(ε2) is a small parameter

I But n0 → n0(t/t0)d/2 flows to infinity, so we can’t use
perturbation theory unless we can re-sum to all orders of n0.

Tree Diagrams

a(0) =
n0

1 + 2λ0n0t
→ 1

2λ0t
=

1
2g0(Dt0)d/2t−1

0 t

Recall g0 = gR +O(g2
R), so

a(0) ∼ (t/t0)−d/2

2gR(Dt0)d/2t−1
0 t0

+O(g0
R) =

1
2g∗

(Dt)−d/2 +O(g0
R)

We find expected time dependence, and a universal amplitude. But
what about the other diagrams?
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ε = 2− d Expansion — Loops

Topology: diagrams of order nj0λ
k
0 have n = k + 1− j loops,

which implies the sum of all n-loop diagrams has the form

a(n)(t, n0, λ0) = λn−1
0 f

(
t, λ0n0

)
Calculation: infinite sums of diagrams with n loops are order

O(1) in the n0 →∞ limit. (Shown on the next slide. . . .)

Recall that the t-dependence comes from n0 and the overall
t−d/2 factor.

Conclusion: loop expansion gives a(n) ∼ g∗(n−1)t−d/2 to all
orders:

a ∼
[

1
4πε

+
2 ln 8π − 5

16π
+O(ε)

]
1

(Dt)d/2
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Sum of All n-Loop Diagrams

Define the tree-level response function:

G(k, t2, t1)tr = F.T.〈φ(x2, t2)φ̃(x1, t1)〉tree

This obeys a Dyson eq:

which yields

t12t

=

=

. . .

+

+ + +

k

G(k, t2, t1)tr = e−Dk
2(t2−t1)

[
1 + 2λ0n0t1
1 + 2λ0n0t2

]2

∼ e−Dk2(t2−t1)

(
t1
t2

)2

All loop diagrams can be
constructed from Gtr

and atree

+ +

+ . . . 
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d = dc = 2

The β-function becomes

β(gR) =
1

16π
g2
R

gR

β d =2

Running coupling flows to zero as

g̃R(t/b) ∼ 4π
ln t

It’s still a small parameter, so loop expansion still useful. But now
tree diagrams give asymptotic result:

a ∼ 1
2gR

1
Dt
∼ 1

8π
ln t
Dt

+O

(
1
Dt

)
Matches exact solution!
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Summary and Observations

I Whew!

I Reaction-diffusion field theory for decay processes yield
controlled RG calculations, relatively rare in nonequilibrium
(compare KPZ, Cahn-Hilliard)

I And can be renormalized to all orders in the loop expansion,
relatively rare anywhere!

I For d < 2, all orders of diagrams contribute to the t−d/2

decay, but the universal amplitude is obtained perturbatively

I RG calculation confirms exact results (for d = 2) and
demonstrates universality.
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Exercises

1. Loop integrals

(a) Confirm that I(t) = 2(8πDt)−d/2. Laplace transform this to
find I(s).

(b) From the definitions of gR, g0, and g∗, confirm
gR = g0/(1 + g0/g

∗).

2. The sum of all 2-loop diagrams can be given by six “skeleton”
diagrams. One of these was given. Identify the other five.

3. Order of loop diagrams

(a) Confirm that diagrams of order λk
0n

j
0 have n = k + 1− j

loops.

(b) Show that this implies that the sum of all n-loop diagrams has
the form λn−1

0 f(λ0n0).
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Exercises

4. Calculating the tree-level response function

(a) Show that the Dyson equation for the tree-level response
function gives

G(k, t2,t1)tr = e−Dk2(t2−t1)

+
∫ t2

t1

dt′ e−Dk2(t2−t1)(−2λ0)2atree(t′)G(k, t′, t1)tr

(b) Plug in the hypothesis Gtr = e−Dk2(t2−t1)f(t2, t1) and derive
a differential equation for f(t2, t1).

(c) Integrate this equation to confirm the result for Gtr quoted in
the talk.
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