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Field Theory Approach to Diffusion-Limited Reactions

1. Models and Mappings

How to turn stochastic particle models into a field theory,
with no phenomenology.

2. Single-Species Annihilation
Field theoretic renormalization group calculation for
A+ A — 0 reaction in gory detail.

3. Applications

Higher order reactions, disorder, Lévy flights, two-species
reactions, coupled reactions.

4. Active to Absorbing State Transitions

Directed percolation, branching and annihilating random
walks, and all that.



A+ A — A: One-Species Coalescence Reaction

Mapping of A+ A — A to field theory gives [Peliti, JPA 1986]
= / dl dt [$(0; ~ DV)6 + Dhadd? + Nd?6? — nodo(1)|

Diagrammatic expansion and renormalization identical, only the
3-point vertex coefficient is changed.

Rescaling symmetry: [BL, JPA 1994]

Under ¢ — b and ¢ — ¢ /b, action is invariant except
Aodd® — bhogd®  nod — (no/b)d
Choosing b =2 maps A+ A — Ainto A+ A — 0, implying

Apiaa (t) = 20,4, 40 (t)



A+A—O0Oford>2

We found for d > 2 that loop diagrams { + {><

made finite, non-universal corrections
to the 3-point vertex

Equivalently, the 4-point vertex A\gp2¢? flows to zero under
renormalization. For late times, the problem reduces to an effective
action [BL & J. Cardy, JSP 1995]

S = / d dt [&(at — DV2)¢ + 200> — anE(S(t)]

This is linear in ¢, so [ Dge () gives
Op = DV¢ — 2Xerd” + nod(t)

Reaction-diffusion equation without the noise!



3A — (A: Higher Order Reactions

» Rate equation dya = —\a® predicts a ~ t~1/2

de=1

» Interaction vertices are now H< >-< >-<

» Dyson sum of tree diagrams gives

, SO we expect

no 1
(1+6Xondt)1 /2 /3ot

» Full calculation with RG flows yields

Qtree =

ag(t) — [Céo)glgl/Q + Clgl) + 052) 9112/2 + . ](Dt)—l/Q

27
with gp ~ ———— where the Cé") are universal

V3In(t/7)

coefficients and 7 is some non-universal time.



3A — (A: Higher Order Reactions [BVL & M. Gildner, PRE 2006]

ag(t) = [Ag\/ln(t/r) + By + Cz\/ﬁ +.. } (Dt)~1/2
= [Agvlnt—{—Bg—i- (CZ—F%IDT)\/%—I—...](D@_I/Q
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A+ A — 0 with Lévy Flights [D. Vernon, PRE 2003]

Allow hops of size ¢ with probability P ~ ¢=4=7. For o < 2,
Tyms ~ /7 (superdiffusive).

D _Dk2 _
Changes propagator in field theory e Pkt — ¢~ Dkt
Now d. = o < 2 and our 30

. .. @ simulation
expansion is in powers of exact result
c= o — d —— e—expansion

Allows comparison to
d = 1 simulations with €
small:




A+ B — 0 Introduction

Conservation law: Since ng — np unchanged by reaction,
a(t) — b(t) = const.

Rate Equations: J;a = —Aab Otb = —Xab
Case l: ag =0y = a(t) =0b(t) ~1/(\t)
Case ll: ap >by = a(t) — ap—bo
and 9;b ~ —A(ag —bo)b = b~ e AMao—bo)t
Reaction-Diffusion Equations:
da=DaV?a—Xab  9b= DpV?b— Aab

For ag = by and d < 4 particles segregate: [Bramson &
Lebowitz, PRL 1988]

(a(t) = 3{(at) + b(1) ) ~ {Ja(t) - b(1)])



A+ B — 0 Results [Toussaint & Wilczek, JCP 1983]

Consider D4 = Dp and take difference of reaction-diffusion

equations:
di(a —b) = DV?(a — b)

Long-lived mode, decays only by diffusion.

> Initial densities ((a — b)), = 0, but

((ax) = b)) (a(0) = b(0)) ) = mod(x)

» These fluctuations relax by diffusion:

(-0 =

» Taking into account segregation:

a(t) =b(t) = \/?r(8\7/:?t)d/4 for d < 4




A+ B — 0 Field Theory [BL & J. Cardy, JSP 1995]

. 2 2
Action has propagators G4 = e P4kt and G = e PBKE,
Vertices are —/ / \./

—Xpaab f)\gbab 7/\[)(Lbab

Diagrams that renormalize the reaction are given by

— WA N AN N N+

N_s N_- ~_~-

= everything goes through as before: d. = 2, and for d < 2,
)\0 — gRr ~~ 0(6)

» What happened to d = 47

» Why don’t we see anything special happen in the density at
d=27



A+ B — 0: Roleof d.=2and d =4

d =4 RG predicts for d > 2 asymptotic results given by the
effective field theory with Agabab — 0. This is equivalent to
the reaction-diffusion equations.

The change from ¢~ to t=%/* is just a property of fluctuations
in the initial conditions surviving to late times or not.

d. = 2 Plenty happens at d. = 2. For ag > bg, reaction-diffusion
equations predict b ~ e~20(a0—b0)t byt

b e Tt/Int for d =2
e~ T2 for d < 2

Reaction zones also exhibit qualitative change at d = 2 and
notd=4...



Reaction Zones: Initially Segregated Particles

- *
Reaction-diffusion egs give [Gélfi & Racz, PRA 1988]
Depletion zone: Wy ~ t/2 width: w ~ ¢4
Interparticle spacing in reaction zone: £, ~ t7

1 d>?2 L d>?2
6 3d
ﬁ:{ 1 v = 1

5(14d) d<?2 30+d) d<?2



The Trapping Reaction

Two-species reaction-diffusion system A+ B — A
» A = “traps” with diffusion constant D
» B = “particles” with diffusion constant D'. 6= D'/D

Rate Equation: b= —XNagh = b~ exp(—ag)\'t)

Static Traps: case D = 0 special, dominated by rare regions
b ~ exp(—Tt¥(d+2)) [Donsker & Varadhan '75]

Fluctuations: rate equation valid only for d > 2. For d < 2 take
ap — aogt¥?, N — g* (d < 2) or 1/Int (d = 2)

b exp(—I't/Int) d=2
exp(—T't¥?)  d<2

[Exact: Bramson & Lebowitz '88, Bray & Blythe '02]



Reacting Traps

Now consider the case where the trap density also decays due to

A4 A A coalies:.cer?ce, probabi.li.typ
() annihilation, probability 1 — p,

a well-studied one-species reaction.

1

Rate Equation: @ = —(2—p)Aa® = a~ (2=p)At

RG Calculation: fluctuations important for d < 2:

~ Int
A, —
a~?d Dt

A,(Dt)=4? 4 <2

d=2

with universal amplitude



The Trapping Reaction with Reacting Traps

The decaying trap density
increases the survival
probability of particles ; ﬁ

time

position
. N\
Rate Equation: b= —Nab~ —————b = b~t?
ate Equation a CEY
. . o >\/
with nonuniversal 6 = PRI

Exponential decay replaced by a power law!

Fluctuations: give a universal decay exponent 6(p,d) for d < 2.
Theoretical results include exact solutions, RG calculations,
and Smoluchowski theory.



Exact Solutions for Decay Exponent 0(p,d) in d =1

Persistence: For D' = 0, the B particles measure locations not
visted by a trap.

2

2
—p 1 ,
0=— ————— | — = |Derrida et al. '95
3 arccos <\@(2—p)> g [Derrida et a ]

3 Walker Problem: Forp=1 (A+ A — A), a B particle sees
only its left and right neighbors. Recall § = D’/D.

b= 2arccos[d/(1 + )]

[Fisher & Gelfand '88]

B is a Tagged A: for § = 1 (equal diffusion constants) and p =0
(A+A—0). Gives § =1/2.



Smoluchowski Theory

Correlation function mean field theory:

1. attach the origin of a coordinate system to a particle
2. solve for the diffusion field exterior to the particle, r > R.
BC's:
» n(R,t) =0 at particle boundary
» n(r — oo,t) = n(t): uniform density at infinity
3. use the resulting flux toward the particle to define an effective
rate constant

4. solve rate equation with time-dependent rate constant

Surprisingly effective for one-species reactions.

1 /2
Gives b ~ t~? with 6 = % <_2HS> for d < 2.
—p



Renormalization Group Calculation

> Gives b ~ t~Y with
146
0=——+4 f(p,0)e+ 0(62)
2-p
where € = 2 — d. [Howard '96, Krishnamurthy, Rajesh, &
Zaboronski '03, Rajesh, & Zaboronski '04]

» Demonstrates universality!



Particle Density Decay [R. Rhoades & BVL]

Simulated p=0, 5, 3,3, land6=1%,%,1,1,2,3 5ind=1

A density known, confirmed. B density power-law in all cases.

1 T T T T T
A+A—D




Decay Exponent 6 versus p
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Decay Exponent 6 versus 6 = D'/ D
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Decay Exponent 6 versus 6 = D'/ D
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Trap-Trap Correlation Function

Simply scales with the diffusion length:

(a(z,t)a(0, 1)) — (a(t))®

CAA(:c,t) =

t=102, 10°, 10*

% -0.5 ¢ p=0, 1/2, 1 1 Exact: [Masser &
(O] Data ben-Avraham '01]
Exact

0o 1 2 3 4 5
x/(Dt) "2



Trap-Particle Correlation Function: p =0

Cap(z,t) = W’t)b((f{giQ’ZL)@W” ~ fap(z/t'/?)

0 —
02t
A+A—>QD
X 04 5=1/8 —— ]
@ —
o) 3
06t 1
Gaalxt) ——
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Trap-Particle Correlation Function: p =1
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Particle-Particle Correlation Function

Crp(o, 1) = LEOON B2 | p o ip1/2y7

(b(1))?
800 |
. g 8:2 o
— \\
X 400 |
0 1 2 ’ 4
x/(Dt) 12

Case p = 1. No simple scaling!



Anomalous Dimension

2 b 2
<a >20 ~ <a >C ~ constant, but < >2C -~ t¢)
(a) (a)(b) o)
T T r ; 8=5 ‘
10 | SR |
A+A—A g /12 rrrrrrrrrrrrr
1/5 7777777
N_/a 10% |
N
100 ¢ A+A—D
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BB Correlations

Now we find Cpp(z,t) ~ t¢fBB(x/t1/2) case p = 1:
1.4 T T : :

1.2
1

08 |
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Gpg(x.H/t?
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4 Walker Problem

Ind=1forp=1(A+ A — A): exponent ¢ a property of a
particular 4 walker problem:

8Ng

position

time




RG Calculation for Particles

Density b@===x = --x * ——/x + —//x< ¥
Response Function ti—tl = —--- + __/ _//:

N

One Loop Diagrams: - —L/\

Proceeding naively to particle calculation:

e B
b(t) ~ 1790/ [ A+ Z gl (g /9m) + O(gh)

Something is wrong.



RG Calculation for Particles

o B
b(t) ~ t9r/(2P)oR {A + —9rf(9r/9R) + 0(9%)}

» Howard '96: regulate the ag — oo limit, removes the 1/e,
adds logarithmic time dependence: resum.

» KRZ '03: Since bare b(t) diverges as Int for small ¢ (d = 2),
renormalize the initial density bg

» RZ '04: Or instead do bare expansion of ¢d; Inb(t) and
renormalize exponent directly.

All approaches give the same 6. Can we use one to calculate our
anomalous dimension ¢?



RG Calculation for For Anomalous Dimension

Simplest approach:
Cpplk=0,t) = /ddl‘ e XCpp(x,t) ~ t429

Tree level:

e

Gives ¢ = 0+ O(€). So we need to look at 1-loop correlations.



Trap-Trap 1-Loop Correlations

6 diagrams:

X N X
S X AX




Trap Correlation Function — Topology/Causality



AB and BB Correlation Function — Many Diagrams

- Number of one-loop diagrams:

& {% > AA: 6

» AB: 42

% §<\ » BB: 59

Would be hopeless, except . ..
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Summary and Conclusions

» RG methods and exact solutions are complementary. RG
justifies the application of reaction-diffusion equations for
d> 2.

» Many problems can be “solved” by inserting RG flows
> ng — notd/2
> N —gtford<2orX — 1/Int
» t — to and overall (Dt)~4/2

» In A+ B — 0, the upper critical dimension is d. = 2. Can be
seen in unequal initial conditions or reaction zones.

» Many new challenges and Feynman diagrams await. . .



A Few More Applications

Particle Source 0 — A: Droz & Sasvari, PRE '93; Rey & Droz, JPA '97
Persistence: Cardy, JPA 1995

Quenched Random Velocity Fields: Oerding, JPA 1996; Richardson &
Cardy, JPA 1999

Quenched Random Potential: Park & Deem, PRE 1998
Site Occupation Restrictions: van Wijland, PRE 2001
Reversible Reactions: Rey & Cardy JPA 1999

Coupled Reactions: Howard, JPA 1996; Howard & Tauber, JPA 1997;
and many more

Active to Absorbing State Transitions: tomorrow.



Exercises (on board during lecture)




Exercises (on board during lecture)




