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Field Theory Approach to Diffusion-Limited Reactions

1. Models and Mappings

How to turn stochastic particle models into a field theory,
with no phenomenology.

2. Single-Species Annihilation

Field theoretic renormalization group calculation for
A+A→ 0 reaction in gory detail.

3. Applications

Higher order reactions, disorder, Lévy flights, two-species
reactions, coupled reactions.

4. Active to Absorbing State Transitions

Directed percolation, branching and annihilating random
walks, and all that.



A+ A→ A: One-Species Coalescence Reaction

Mapping of A+A→ A to field theory gives [Peliti, JPA 1986]

S =
∫
ddx dt

[
φ̃(∂t −D∇2)φ+ �2λ0φ̃φ

2 + λ0φ̃
2φ2 − n0φ̃ δ(t)

]
Diagrammatic expansion and renormalization identical, only the
3-point vertex coefficient is changed.

Rescaling symmetry: [BL, JPA 1994]

Under φ→ bφ and φ̃→ φ̃/b, action is invariant except

λ0φ̃φ
2 → bλ0φ̃φ

2 n0φ̃→ (n0/b)φ̃

Choosing b = 2 maps A+A→ A into A+A→ 0, implying

aA+A→A(t) = 2aA+A→0(t)



A+ A→ 0 for d > 2

We found for d > 2 that loop diagrams
made finite, non-universal corrections
to the 3-point vertex

+

Equivalently, the 4-point vertex λ0φ̃
2φ2 flows to zero under

renormalization. For late times, the problem reduces to an effective
action [BL & J. Cardy, JSP 1995]

S =
∫
ddx dt

[
φ̃(∂t −D∇2)φ+ 2λ0φ̃φ

2 − n0φ̃ δ(t)
]

This is linear in φ̃, so
∫ Dφ̃e−φ̃(... ) gives

∂tφ = D∇2φ− 2λeffφ
2 + n0δ(t)

Reaction-diffusion equation without the noise!



3A→ `A: Higher Order Reactions

I Rate equation ∂ta = −λa3 predicts a ∼ t−1/2, so we expect
dc = 1

I Interaction vertices are now

I Dyson sum of tree diagrams gives

atree =
n0

(1 + 6λ0n2
0t)1/2

∼ 1√
3λ0t

I Full calculation with RG flows yields

a`(t) =
[
C

(0)
` g

−1/2
R + C

(1)
` + C

(2)
` g

1/2
R + . . .

]
(Dt)−1/2

with gR ∼ 2π√
3 ln(t/τ)

where the C
(n)
` are universal

coefficients and τ is some non-universal time.



3A→ `A: Higher Order Reactions [BVL & M. Gildner, PRE 2006]

a`(t) =
[
A`
√

ln(t/τ) +B` + C`
1√

ln(t/τ)
+ . . .

]
(Dt)−1/2

=
[
A`
√

ln t+B` +
(
C` + 1

2 ln τ
)

1√
ln t

+ . . .
]
(Dt)−1/2
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A+ A→ 0 with Lévy Flights [D. Vernon, PRE 2003]

Allow hops of size ` with probability P ∼ `−d−σ. For σ < 2,
xrms ∼ t1/σ (superdiffusive).

Changes propagator in field theory e−Dk
2t → e−Dk

σt.

Now dc = σ < 2 and our
expansion is in powers of
ε = σ − d
Allows comparison to
d = 1 simulations with ε
small:



A+B → 0 Introduction

Conservation law: Since nA − nB unchanged by reaction,
a(t)− b(t) = const.

Rate Equations: ∂ta = −λab ∂tb = −λab
Case I: a0 = b0 ⇒ a(t) = b(t) ∼ 1/(λt)

Case II: a0 > b0 ⇒ a(t)→ a0 − b0
and ∂tb ∼ −λ(a0 − b0)b ⇒ b ∼ e−λ(a0−b0)t

Reaction-Diffusion Equations:

∂ta = DA∇2a− λab ∂tb = DB∇2b− λab
For a0 = b0 and d < 4 particles segregate: [Bramson &

Lebowitz, PRL 1988]

〈a(t)〉 = 1
2

〈(
a(t) + b(t)

)〉 ∼ 1
2

〈
|a(t)− b(t)|

〉



A+B → 0 Results [Toussaint & Wilczek, JCP 1983]

Consider DA = DB and take difference of reaction-diffusion
equations:

∂t(a− b) = D∇2(a− b)
Long-lived mode, decays only by diffusion.

I Initial densities
〈
(a− b)〉

0
= 0, but〈(

a(x)− b(x)
)(
a(0)− b(0)

)〉
0

= n0δ(x)

I These fluctuations relax by diffusion:〈(
a(t)− b(t))2〉 =

n0

(8πDt)d/2

I Taking into account segregation:

a(t) = b(t) =
√
n0√

π(8πDt)d/4
for d < 4



A+B → 0 Field Theory [BL & J. Cardy, JSP 1995]

Action has propagators GA = e−DAk
2t and GB = e−DBk

2t.

Vertices are

−λ0 ã ab −λ0 b̃ ab −λ0 ãb̃ ab

Diagrams that renormalize the reaction are given by

+ + + + . . .

⇒ everything goes through as before: dc = 2, and for d < 2,
λ0 → gR ∼ O(ε).

I What happened to d = 4?

I Why don’t we see anything special happen in the density at
d = 2?



A+B → 0: Role of dc = 2 and d = 4

d = 4 RG predicts for d > 2 asymptotic results given by the
effective field theory with λ0ãb̃ ab→ 0. This is equivalent to
the reaction-diffusion equations.

The change from t−1 to t−d/4 is just a property of fluctuations
in the initial conditions surviving to late times or not.

dc = 2 Plenty happens at dc = 2. For a0 > b0, reaction-diffusion
equations predict b ∼ e−λ0(a0−b0)t, but

b ∼
{
e−Γt/ ln t for d = 2
e−Γtd/2 for d < 2

Reaction zones also exhibit qualitative change at d = 2 and
not d = 4 . . .



Reaction Zones: Initially Segregated Particles

Wd

x

<a>a
0 <b>

R(x) b
0

w

Reaction-diffusion eqs give [Gálfi & Rácz, PRA 1988]

Depletion zone: Wd ∼ t1/2 width: w ∼ tβ

Interparticle spacing in reaction zone: `rz ∼ tγ

β =

{
1
6 d > 2

1
2(1+d) d < 2

γ =

{
1
3d d > 2

1
2(1+d) d < 2



The Trapping Reaction

Two-species reaction-diffusion system A+B → A

I A = “traps” with diffusion constant D

I B = “particles” with diffusion constant D′. δ ≡ D′/D

Rate Equation: ḃ = −λ′a0b ⇒ b ∼ exp(−a0λ
′t)

Static Traps: case D = 0 special, dominated by rare regions
b ∼ exp(−Γtd/(d+2)) [Donsker & Varadhan ’75]

Fluctuations: rate equation valid only for d > 2. For d ≤ 2 take
a0 → a0t

d/2, λ′ → g∗ (d < 2) or 1/ ln t (d = 2)

b ∼
{

exp(−Γt/ ln t) d = 2
exp(−Γtd/2) d < 2

[Exact: Bramson & Lebowitz ’88, Bray & Blythe ’02]



Reacting Traps

Now consider the case where the trap density also decays due to

A+A→
{
A coalescence, probability p

∅ annihilation, probability 1− p,
a well-studied one-species reaction.

Rate Equation: ȧ = −(2− p)λa2 ⇒ a ∼ 1
(2− p)λt

RG Calculation: fluctuations important for d ≤ 2:

a ∼

Ãp
ln t
Dt

d = 2

Ap(Dt)−d/2 d < 2

with universal amplitude



The Trapping Reaction with Reacting Traps

The decaying trap density
increases the survival
probability of particles tim

e

position

Rate Equation: ḃ = −λ′ab ∼ λ′

(2− p)λt b ⇒ b ∼ t−θ

with nonuniversal θ = λ′

(2−p)λ .

Exponential decay replaced by a power law!

Fluctuations: give a universal decay exponent θ(p, δ) for d < 2.
Theoretical results include exact solutions, RG calculations,
and Smoluchowski theory.



Exact Solutions for Decay Exponent θ(p, δ) in d = 1

Persistence: For D′ = 0, the B particles measure locations not
visted by a trap.

θ =
2
π2

arccos
( −p√

2(2− p)

)2

− 1
8

[Derrida et al. ’95]

3 Walker Problem: For p = 1 (A+A→ A), a B particle sees
only its left and right neighbors. Recall δ = D′/D.

θ =
π

2 arccos[δ/(1 + δ)]
[Fisher & Gelfand ’88]

B is a Tagged A: for δ = 1 (equal diffusion constants) and p = 0
(A+A→ ∅). Gives θ = 1/2.



Smoluchowski Theory

Correlation function mean field theory:

1. attach the origin of a coordinate system to a particle

2. solve for the diffusion field exterior to the particle, r > R.
BC’s:

I n(R, t) = 0 at particle boundary
I n(r →∞, t) = n(t): uniform density at infinity

3. use the resulting flux toward the particle to define an effective
rate constant

4. solve rate equation with time-dependent rate constant

Surprisingly effective for one-species reactions.

Gives b ∼ t−θ with θ =
d

2− p
(

1 + δ

2

)d/2
for d < 2.



Renormalization Group Calculation

I Gives b ∼ t−θ with

θ =
1 + δ

2− p + f(p, δ)ε+O(ε2)

where ε = 2− d. [Howard ’96, Krishnamurthy, Rajesh, &

Zaboronski ’03, Rajesh, & Zaboronski ’04]

I Demonstrates universality!



Particle Density Decay [R. Rhoades & BVL]

Simulated p = 0, 1
4 , 1

2 , 3
4 , 1 and δ = 1

5 , 1
3 , 1

2 , 1, 2, 3, 5 in d = 1

A density known, confirmed. B density power-law in all cases.
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Decay Exponent θ versus p
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Decay Exponent θ versus δ = D′/D
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Decay Exponent θ versus δ = D′/D
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Trap-Trap Correlation Function

Simply scales with the diffusion length:

CAA(x, t) =
〈a(x, t)a(0, t)〉 − 〈a(t)〉2

〈a(t)〉2 ∼ fAA(x/t1/2)
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Trap-Particle Correlation Function: p = 0

CAB(x, t) = 〈a(x,t)b(0,t)〉−〈a(t)〉〈b(t)〉
〈a(t)〉〈b(t)〉 ∼ fAB(x/t1/2)
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Trap-Particle Correlation Function: p = 1
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Particle-Particle Correlation Function

CBB(x, t) = 〈b(x,t)b(0,t)〉−〈b(t)〉2
〈b(t)〉2 ∼ fBB(x/t1/2)?
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Anomalous Dimension

〈a2〉c
〈a〉2 ∼

〈ab〉c
〈a〉〈b〉 ∼ constant, but

〈b2〉c
〈b〉2 ∼ t

φ
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BB Correlations

Now we find CBB(x, t) ∼ tφfBB(x/t1/2) case p = 1:
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4 Walker Problem

In d = 1 for p = 1 (A+A→ A): exponent φ a property of a
particular 4 walker problem:

tim
e

position



RG Calculation for Particles

Density =

Response Function
t2 t1

=

+

+ + + ...

One Loop Diagrams:

(0) =b + + ...

Proceeding naively to particle calculation:

b(t) ∼ t−g′R/(2−p)gR
[
A+

B

ε
g′Rf(g′R/gR) +O(g2

R)
]

Something is wrong.



RG Calculation for Particles

b(t) ∼ t−g′R/(2−p)gR
[
A+

B

ε
g′Rf(g′R/gR) +O(g2

R)
]

I Howard ’96: regulate the a0 →∞ limit, removes the 1/ε,
adds logarithmic time dependence: resum.

I KRZ ’03: Since bare b(t) diverges as ln t for small t (d = 2),
renormalize the initial density b0

I RZ ’04: Or instead do bare expansion of t∂t ln b(t) and
renormalize exponent directly.

All approaches give the same θ. Can we use one to calculate our
anomalous dimension φ?



RG Calculation for For Anomalous Dimension

Simplest approach:

CBB(k = 0, t) =
∫
ddx eik·xCBB(x, t) ∼ td/2+φ

Tree level:

AA AB

BB

Gives φ = 0 +O(ε). So we need to look at 1-loop correlations.



Trap-Trap 1-Loop Correlations

6 diagrams:



Trap Correlation Function — Topology/Causality



AB and BB Correlation Function — Many Diagrams

Number of one-loop diagrams:

I AA: 6

I AB: 42

I BB: 59

Would be hopeless, except . . .





Summary and Conclusions

I RG methods and exact solutions are complementary. RG
justifies the application of reaction-diffusion equations for
d > 2.

I Many problems can be “solved” by inserting RG flows
I n0 → n0t

d/2

I λ0 → g∗ for d < 2 or λ0 → 1/ ln t
I t→ t0 and overall (Dt)−d/2

I In A+B → 0, the upper critical dimension is dc = 2. Can be
seen in unequal initial conditions or reaction zones.

I Many new challenges and Feynman diagrams await. . .



A Few More Applications

Particle Source 0→ A: Droz & Sasvari, PRE ’93; Rey & Droz, JPA ’97

Persistence: Cardy, JPA 1995

Quenched Random Velocity Fields: Oerding, JPA 1996; Richardson &
Cardy, JPA 1999

Quenched Random Potential: Park & Deem, PRE 1998

Site Occupation Restrictions: van Wijland, PRE 2001

Reversible Reactions: Rey & Cardy JPA 1999

Coupled Reactions: Howard, JPA 1996; Howard & Täuber, JPA 1997;
and many more

Active to Absorbing State Transitions: tomorrow.



Exercises (on board during lecture)



Exercises (on board during lecture)


