Field Theory Approach to Diffusion-Limited Reactions:

4. Active to Absorbing State Transitions

Ben Vollmayr-Lee Bucknell University

Boulder School for Condensed Matter and Materials Physics July 17, 2009

A Few More Applications

Particle Source $0 \rightarrow A$: Droz & Sasvari, PRE '93; Rey & Droz, JPA '97

Persistence: Cardy, JPA 1995

Quenched Random Velocity Fields: Oerding, JPA 1996; Richardson & Cardy, JPA 1999

Quenched Random Potential: Park & Deem, PRE 1998

Site Occupation Restrictions: van Wijland, PRE 2001

Reversible Reactions: Rey & Cardy JPA 1999

Coupled Reactions: Howard, JPA 1996; Howard & Täuber, JPA 1997; and many more

Active to Absorbing State Transitions: subject for today

Absorbing State

- ► A state that the system can flow into, but not out of.
- In reaction-diffusion models, the state with no particles is an absorbing state.
- A system many have one, two, many, or infinitely many absorbing states

Active State

- Not an absorbing state, i.e., a state connected dynamically to all other states
- Often used to mean a non-equilibrium steady state.
- In reaction-diffusion models, this then requires birth (0 → A) or branching (A → kA) processes.

Field Theory Approach to Diffusion-Limited Reactions: 4. Active to Absorbing State Transitions

Directed Percolation

Branching and Annihilating Random Walks

Pair Contact Process with Diffusion

Directed Percolation Model

Figure from H. Hinrichsen, Adv. Phys. 49, 815 (2000)

isotropic bond percolation

directed bond percolation

Reaction-Diffusion Model:

- $A \rightarrow 0$ rate μ
- $A \to A + A \quad {\rm rate} \ \sigma$
- $A + A \to A \qquad \text{ rate } \lambda$

plus diffusion

Directed Percolation Demo

[H. Hinrichsen, 2000]

Reactions: $A \xrightarrow{\mu} 0$ $A \xrightarrow{\sigma} A + A$ $A + A \xrightarrow{\lambda} A$

$$\partial_t a = (\sigma - \mu)a - \lambda a^2 \qquad a(t) \to \begin{cases} a_\infty = \frac{\sigma - \mu}{\lambda} & \sigma > \mu\\ 0 & \sigma \le \mu \end{cases}$$

• For $\sigma > \mu$, steady state approached exponentially fast:

$$|a(t) - a_{\infty}| \sim e^{-(\sigma - \mu)t}$$

• For $\sigma = \mu$ it is like $A + A \rightarrow A$, and $a(t) \sim 1/(\lambda t)$.

Critical Exponents

Reaction-Diffusion Equation Let $r = (\mu - \sigma)/D$ (active state r < 0), then

$$\partial_t a = -D(r - \nabla^2)a - \lambda a^2$$

Characteristic length: $\xi \sim |r|^{-1/2}$ and time: $\tau \sim \xi^2/D \sim |r|^{-1}$

Critical Exponents

$$\langle a_{\infty} \rangle \sim (-r)^{\beta} \quad (r < 0) \qquad \langle a(t) \rangle \sim t^{-\alpha} \quad (r = 0)$$

 $\xi \sim |r|^{-\nu} \quad (r \neq 0) \qquad \qquad \tau \sim \xi^{z} \quad (r \neq 0)$

Mean-Field Exponents

$$\beta = 1$$
 $\alpha = 1$ $\nu = 1/2$ $z = 2$

Directed Percolation Conjecture [Janssen '81, Grassberger '82]

A model should belong to the DP universality class if the following conditions are met

- 1. The model displays a continuous phase transition from a fluctuating active phase into a unique absorbing state.
- 2. The transition is characterized by a positive, one-component order parameter.
- 3. The dynamic rules involve only short-range processes.
- 4. The system has no special attributes such as additional symmetries or quenched randomness.

Directed Percolation Field Theory

Reactions:
$$A \xrightarrow{\mu} 0$$
 $A \xrightarrow{\sigma} A + A$ $A + A \xrightarrow{\lambda} A$

$$\hat{H}_{\text{reaction}} = \mu(\hat{a}^{\dagger}\hat{a} - \hat{a}) + \sigma(\hat{a}^{\dagger}\hat{a} - \hat{a}^{\dagger 2}\hat{a}) + \lambda(\hat{a}^{\dagger 2}\hat{a}^{2} - \hat{a}^{\dagger}\hat{a}^{2})$$

Action:

$$S = \int d^d x \, dt \left\{ \tilde{\phi} [\partial_t + D(r - \lambda^2)] \phi - \sigma \tilde{\phi}^2 \phi + \lambda \tilde{\phi} \phi^2 + \lambda \tilde{\phi}^2 \phi^2 \right\}$$

$$\label{eq:propagator:G0} \mathsf{Propagator:} \quad G_0(\mathbf{k},\omega) = \frac{1}{-i\omega + D(r+k^2)}$$

Effective Field Theory

Since the three point vertices appear in tandem, it is helpful to rescale the fields to make their coefficients match. Take

$$\tilde{\phi}
ightarrow \tilde{s} \sqrt{\sigma/\lambda} \qquad \phi
ightarrow s \sqrt{\lambda/\sigma}$$

giving for $u=\sqrt{\sigma\lambda}$

$$S = \int d^d x \, dt \left\{ \tilde{s} [\partial_t + D(r - \lambda^2)] s - u(\tilde{s}^2 s - \tilde{s} s^2) + \lambda \tilde{s}^2 s^2 \right\}$$

Power counting:

$$[\sigma]=\ell^{-2}\text{, }[\lambda]=\ell^{d-2}\quad\Rightarrow\quad [u]=\ell^{d-4}\text{ and }d_c=4.$$

For perturbation theory around $\epsilon = 4 - d$, four-point vertex is irrelevant, so we'll drop it.

$$S_{\text{eff}} = \int d^d x \, dt \left\{ \tilde{s} [\partial_t + D(r - \lambda^2)] s - u(\tilde{s}^2 s - \tilde{s} s^2) \right\}$$

The one-loop correction to the propagator requires a shift in the critical point $(\tau \equiv r - r_c)$ and renormalization of

- 1. the fields s and \tilde{s} (which renormalize identically)
- 2. the diffusion constant
- 3. the true distance from the critical point au
- 4. the coupling u

Coupling $v = u^2$ flows to $O(\epsilon)$ fixed point v^* , which feeds back via the method of characteristics the determine the critical exponents.

To one-loop order

$$\beta = 1 - \frac{\epsilon}{6} + O(\epsilon^2) \qquad \qquad \alpha = 1 - \frac{\epsilon}{4} + O(\epsilon^2)$$
$$\nu = \frac{1}{2} + \frac{\epsilon}{16} + O(\epsilon^2) \qquad \qquad z = 2 - \frac{\epsilon}{12} + O(\epsilon^2)$$

DP Critical Exponents

2-loop RG: Bronzan & Dash, Phys. Lett. B, 1974Series expansions: Jensen, JPA 1999; Voigt & Ziff, PRE 1997; Jensen, PRE 1992 Field Theory Approach to Diffusion-Limited Reactions: 4. Active to Absorbing State Transitions

Directed Percolation

Branching and Annihilating Random Walks

Pair Contact Process with Diffusion

Branching and Annihilating Random Walks (BARW)

Consider the processes

$$A + A \xrightarrow{\lambda} 0 \qquad A \xrightarrow{\sigma} (m+1)A$$

Rate Equation

$$\partial_t a = \sigma m a - 2\lambda a^2$$
 which implies $a(t) \to a_\infty = \frac{\sigma m}{2\lambda}$

For d < 2, fluctuations can change this result, so $a(t) \rightarrow 0$.

Doi Hamiltonian

$$H_{\text{reaction}} = \lambda (\hat{a}^{\dagger 2} \hat{a}^2 - \hat{a}^2) + \sigma (\hat{a}^{\dagger} a - \hat{a}^{\dagger m+1} \hat{a})$$

Note symmetry under $(\hat{a}, \hat{a}^{\dagger}) \rightarrow (-\hat{a}, -\hat{a}^{\dagger})$ for m even.

$$S = \int d^d x \, dt \left\{ \phi^* (\partial_t - D\nabla^2) \phi + \sigma (1 - \phi^{*m}) \phi^* \phi - \lambda (1 - \phi^{*2}) \phi^2 \right\}$$

- ▶ Note that we're avoiding the field shift $\phi^* \rightarrow 1 + \tilde{\phi}$ to maintain the parity symmetry for *m* even. (Initial and final terms unimportant.)
- In addition to A → (m + 1)A, all lower order branching processes are generated:

$$A \to (m-1)A, \quad A \to (m-3)A, \quad \dots$$

- Power counting: m = 1 or m = 2 will dominate, so all theories will m odd or m even will be in the same universality class.
- For m odd, the reaction $A \rightarrow 0$ is also generated.

Effective Field Theory describes processes

 $A+A \rightarrow 0 \qquad A \rightarrow A+A \qquad A \rightarrow 0$

which was our starting point for directed percolation.

Conclusion: BARW with odd number of offspring is in the DP universality class

 \ldots provided that the induced $A \to 0$ transition is capable of driving the system to the absorbing state.

- within perturbative RG, this requires $d \leq 2$
- NPRG finds evidence for inactive phase and DP criticality in higher dimensions [Canet, Delamotte, Deloubrière, & Wschebor, PRL 2004]

$\mathsf{Case} \text{ of } \mathsf{Even} \ m$

Becomes effectively $A + A \xrightarrow{\lambda} 0$ and $A \xrightarrow{\sigma} 3A$

- Branching rate σ renormalization: $\beta_{\sigma} = -y\sigma + O(\sigma^2)$
- For d > 2, annihilation controlled by gaussian (g_R → 0) fixed point, power counting gives y = 2

 \Rightarrow branching is relevant, mean-field active phase.

For d < 2 then $y = 2 - 3\epsilon + O(\epsilon^2)$, which is negative for d < d' = 4/3.

 \Rightarrow branching is relevant for d > 4/3, active phase.

 \Rightarrow for d < 4/3, active to absorbing state transition, controlled by value of σ .

New parity-conserving (PC) universality class!

[Originally discovered by Zhong & ben-Avraham, Phys. Lett. A 1995]

Field Theory Approach to Diffusion-Limited Reactions: 4. Active to Absorbing State Transitions

Directed Percolation

Branching and Annihilating Random Walks

Pair Contact Process with Diffusion

A Cautionary Tale

Instead of branching, consider a pair-contact process:

$$A + A \xrightarrow{\lambda} 0 \qquad A + A \xrightarrow{\sigma} (m+2)A$$

with site occupation restrictions, or an additional $3A \rightarrow 0$ reaction to keep the active phase density finite.

With diffusion this is called the pair contact process with diffusion (PCPD) [Janssen, van Wijland, Deloubrière, & Täuber, PRE 2004]

- Action is straightforward, but under renormalization, the couplings don't flow to fixed points (strong coupling fixed point).
- Numerical evidence is inconclusive, but this could be in the DP universality class.
- ► A qualitatively different effective action is required.

Open Problems

- A + B → 0: full analysis of a₀ = b₀ for d < 2 still lacking.
 Role of topological constraints in d = 1.
- ▶ BARW with *m* even are poorly understood in *d* = 1. New methods for probing the parity-conserving universality class needed.
- Finding an appropriate field theory for PCPD to determine its universality class.
- General classification of scale-invariant behavior in reaction-diffusion systems still far from complete.
- Rate disorder appears to have a large impact on active to absorbing state transitions. Very little is known.
- Method: Doi-Peliti approach, or variants, may prove useful in rare event statistics, obtaining full generating functions, ...