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A Few More Applications

Particle Source 0 → A: Droz & Sasvari, PRE ’93; Rey & Droz, JPA ’97

Persistence: Cardy, JPA 1995

Quenched Random Velocity Fields: Oerding, JPA 1996; Richardson &
Cardy, JPA 1999

Quenched Random Potential: Park & Deem, PRE 1998

Site Occupation Restrictions: van Wijland, PRE 2001

Reversible Reactions: Rey & Cardy JPA 1999

Coupled Reactions: Howard, JPA 1996; Howard & Täuber, JPA 1997;
and many more

Active to Absorbing State Transitions: subject for today . . .
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Active to Absorbing State Transition

Absorbing State

I A state that the system can flow into, but not out of.

I In reaction-diffusion models, the state with no particles is an
absorbing state.

I A system many have one, two, many, or infinitely many
absorbing states

Active State

I Not an absorbing state, i.e., a state connected dynamically to
all other states

I Often used to mean a non-equilibrium steady state.

I In reaction-diffusion models, this then requires birth (0 → A)
or branching (A → kA) processes.
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Directed Percolation Model

Figure from H. Hinrichsen, Adv. Phys. 49, 815 (2000)

directed bond percolationisotropic bond percolation

Reaction-Diffusion Model:
A → 0 rate µ

A → A + A rate σ

A + A → A rate λ

plus diffusion
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Directed Percolation Demo [H. Hinrichsen, 2000]
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Rate Equations

Reactions: A
µ→ 0 A

σ→ A + A A + A
λ→ A

∂ta = (σ − µ)a− λa2 a(t) →

{
a∞ = σ−µ

λ σ > µ

0 σ ≤ µ

I For σ > µ, steady state approached exponentially fast:

|a(t)− a∞| ∼ e−(σ−µ)t

I For σ = µ it is like A + A → A, and a(t) ∼ 1/(λt).
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Critical Exponents

Reaction-Diffusion Equation
Let r = (µ− σ)/D (active state r < 0), then

∂ta = −D(r −∇2)a− λa2

Characteristic length: ξ ∼ |r|−1/2 and time: τ ∼ ξ2/D ∼ |r|−1

Critical Exponents

〈a∞〉 ∼ (−r)β (r < 0) 〈a(t)〉 ∼ t−α (r = 0)

ξ ∼ |r|−ν (r 6= 0) τ ∼ ξz (r 6= 0)

Mean-Field Exponents

β = 1 α = 1 ν = 1/2 z = 2
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Directed Percolation Conjecture [Janssen ’81, Grassberger ’82]

A model should belong to the DP universality class if the following
conditions are met

1. The model displays a continuous phase transition from a
fluctuating active phase into a unique absorbing state.

2. The transition is characterized by a positive, one-component
order parameter.

3. The dynamic rules involve only short-range processes.

4. The system has no special attributes such as additional
symmetries or quenched randomness.
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Directed Percolation Field Theory

Reactions: A
µ→ 0 A

σ→ A + A A + A
λ→ A

Ĥreaction = µ(â†â− â) + σ(â†â− â†2â) + λ(â†2â2 − â†â2)

Action:

S =
∫

ddx dt
{

φ̃[∂t + D(r − λ2)]φ− σφ̃2φ + λφ̃φ2 + λφ̃2φ2
}

Propagator: G0(k, ω) =
1

−iω + D(r + k2)

Vertices:

−λ σ −λ
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Effective Field Theory

Since the three point vertices appear in tandem, it is helpful to
rescale the fields to make their coefficients match. Take

φ̃ → s̃
√

σ/λ φ → s
√

λ/σ

giving for u =
√

σλ

S =
∫

ddx dt
{

s̃[∂t + D(r − λ2)]s− u(s̃2s− s̃s2) + λs̃2s2
}

Power counting:

[σ] = `−2, [λ] = `d−2 ⇒ [u] = `d−4 and dc = 4.

For perturbation theory around ε = 4− d, four-point vertex is
irrelevant, so we’ll drop it.

Seff =
∫

ddx dt
{

s̃[∂t + D(r − λ2)]s− u(s̃2s− s̃s2)
}
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Renormalization

The one-loop correction to the propagator
requires a shift in the critical point
(τ ≡ r − rc) and renormalization of

1. the fields s and s̃ (which renormalize identically)

2. the diffusion constant

3. the true distance from the critical point τ

4. the coupling u

Coupling v = u2 flows to O(ε) fixed point v∗, which feeds back via
the method of characteristics the determine the critical exponents.

To one-loop order

β = 1− ε

6
+ O(ε2) α = 1− ε

4
+ O(ε2)

ν =
1
2

+
ε

16
+ O(ε2) z = 2− ε

12
+ O(ε2)
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DP Critical Exponents
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2-loop RG: Bronzan & Dash, Phys. Lett. B, 1974

Series expansions: Jensen, JPA 1999; Voigt & Ziff, PRE 1997;

Jensen, PRE 1992

13 / 21



Field Theory Approach to Diffusion-Limited Reactions:
4. Active to Absorbing State Transitions

Directed Percolation

Branching and Annihilating Random Walks

Pair Contact Process with Diffusion

14 / 21



Branching and Annihilating Random Walks (BARW)

Consider the processes

A + A
λ→ 0 A

σ→ (m + 1)A

Rate Equation

∂ta = σma− 2λa2 which implies a(t) → a∞ =
σm

2λ

For d < 2, fluctuations can change this result, so a(t) → 0.

Doi Hamiltonian

Hreaction = λ(â†2â2 − â2) + σ(â†a− â†m+1â)

Note symmetry under (â, â†) → (−â,−â†) for m even.
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BARW Field Theory [J. Cardy & U.C. Täuber, PRL ’96, JPA ’98]

S =
∫

ddx dt
{

φ∗(∂t −D∇2)φ + σ(1− φ∗m)φ∗φ− λ(1− φ∗2)φ2
}

I Note that we’re avoiding the field shift φ∗ → 1 + φ̃ to
maintain the parity symmetry for m even. (Initial and final
terms unimportant.)

I In addition to A → (m + 1)A, all lower order branching
processes are generated:

A → (m− 1)A, A → (m− 3)A, . . .

I Power counting: m = 1 or m = 2 will dominate, so all theories
will m odd or m even will be in the same universality class.

I For m odd, the reaction A → 0 is also generated.
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Case of Odd m

Effective Field Theory describes processes

A + A → 0 A → A + A A → 0

which was our starting point for directed percolation.

Conclusion: BARW with odd number of offspring
is in the DP universality class

. . . provided that the induced A → 0 transition is capable of driving
the system to the absorbing state.

I within perturbative RG, this requires d ≤ 2

I NPRG finds evidence for inactive phase and DP criticality in
higher dimensions [Canet, Delamotte, Deloubrière, & Wschebor,

PRL 2004]
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Case of Even m

Becomes effectively A + A
λ→ 0 and A

σ→ 3A

I Branching rate σ renormalization: βσ = −yσ + O(σ2)

I For d > 2, annihilation controlled by gaussian (gR → 0) fixed
point, power counting gives y = 2

⇒ branching is relevant, mean-field active phase.

I For d < 2 then y = 2− 3ε + O(ε2), which is negative for
d < d′ = 4/3.

⇒ branching is relevant for d > 4/3, active phase.

⇒ for d < 4/3, active to absorbing state transition,
controlled by value of σ.

New parity-conserving (PC) universality class!

[Originally discovered by Zhong & ben-Avraham, Phys. Lett. A 1995]

18 / 21



Field Theory Approach to Diffusion-Limited Reactions:
4. Active to Absorbing State Transitions

Directed Percolation

Branching and Annihilating Random Walks

Pair Contact Process with Diffusion

19 / 21



A Cautionary Tale

Instead of branching, consider a pair-contact process:

A + A
λ→ 0 A + A

σ→ (m + 2)A

with site occupation restrictions, or an additional 3A → 0 reaction
to keep the active phase density finite.

With diffusion this is called the pair contact process with diffusion
(PCPD) [Janssen, van Wijland, Deloubrière, & Täuber, PRE 2004]

I Action is straightforward, but under renormalization, the
couplings don’t flow to fixed points (strong coupling fixed
point).

I Numerical evidence is inconclusive, but this could be in the
DP universality class.

I A qualitatively different effective action is required.
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Open Problems

I A + B → 0: full analysis of a0 = b0 for d < 2 still lacking.
Role of topological constraints in d = 1.

I BARW with m even are poorly understood in d = 1. New
methods for probing the parity-conserving universality class
needed.

I Finding an appropriate field theory for PCPD to determine its
universality class.

I General classification of scale-invariant behavior in
reaction-diffusion systems still far from complete.

I Rate disorder appears to have a large impact on active to
absorbing state transitions. Very little is known.

I Method: Doi-Peliti approach, or variants, may prove useful in
rare event statistics, obtaining full generating functions, . . .
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