Universality Classes in Coarsening

Benjamin P. Vollmayr-Lee Bucknell University

October 22, 2009

Collaborators:

- Andrew Rutenberg, Dalhousie University
- Melinda Gildner, Bucknell \rightarrow UPenn
- Will Rosenbaum, Reed \rightarrow Indiana
- Fawntia Fowler, Reed \rightarrow Stanford
- ► Sohei Yasuda, Bucknell → Purdue

Bucknell Physics REU

Coarsening Introduction

Theoretical Picture & Universality Conjecture

Asymptotic Defect Dynamics

Asymmetric Mobility — Numerical Test of Conjecture

Summary and Outlook

is a nonequilibrium relaxational process in which the characteristic length scale grows with time.

Many examples in nature:

- binary alloys
- polycrystals
- magnetic domains
- binary fluids
- epitaxy
- salad dressing

- polymer blends
- soap froths
- colloids
- liquid crystals
- faceted surfaces
- ▶ and more . . .

Phase Ordering Dynamics (binary alloys, polymer blends)

- Rapid quench into the forbidden region of a phase diagram
- system responds locally by equilibrating into one of the two phases
- leads to equilibrated domains separated by costly interface
- dissipative dynamics gives coarsening

2D Dry Soap Froth

Glazier, Gross, and Stavans, Phys. Rev. A 36, 306 (1987).

Self-similarity!

3D Wet Soap Froth

Magnetic Resonance Imaging

Gonata *et al.*, *Phys. Rev. Lett.* **75**, 573 (1995).

(a) Colloidal Suspension and (b) Polymer Solution

Tanaka, Nishikawa, and Koyama, J. Phys. Cond. Matt. 17, L143 (2005).

Universality!

Homoepitaxial Islands

Cu on a Cu(100) surface

Pai et al., Phys. Rev. Lett. 79, 3210 (1997).

Random Copolymers – PEH/PEB

Shimizu et al., Polymer 45, 7061 (2004).

Requirements:

• Excess free energy stored in stable, local defects (e.g., domain walls): $F - F_{eq} \propto \rho_{def}$

• Dissipation:
$$\frac{dF}{dt} < 0 \Rightarrow \frac{d\rho_{\text{def}}}{dt} < 0$$

Result: growing characteristic length L(t)

Basic Features of Coarsening

Sharp defects defect size ξ fixed, so for asymptotically late times $L(t) \gg \xi \Leftrightarrow$ sharp-defect limit.

Self-similarity domain structure statistically invariant when rescaled by L(t).

Implies correlation function scaling $C(\mathbf{r},t)=f\left(\mathbf{r}/L(t)\right)$

Power law growth characteristic scale $L \sim t^{\alpha}$

Universality exponent α determined by only a few general features: conservation laws and nature of order parameter

Coarsening Models I: Kinetic Ising Models

Lattice of spins $s_i=\pm 1$, with hamiltonian $H=-J\sum_{\langle ij
angle}s_is_j$

Spins initially random $(T_i = \infty)$. Quench at time t = 0 to $T < T_c$.

Coarsening Models I: Kinetic Ising Models

Lattice of spins $s_i=\pm 1$, with hamiltonian $H=-J\sum_{\langle ij
angle}s_is_j$

Spins initially random $(T_i = \infty)$. Quench at time t = 0 to $T < T_c$.

Glauber Dynamics

► spins flip with probability determined by energy ⇒ nonconserved order parameter.

Coarsening Models I: Kinetic Ising Models

Lattice of spins $s_i=\pm 1$, with hamiltonian $H=-J\sum_{\langle ij
angle}s_is_j$

Spins initially random $(T_i = \infty)$. Quench at time t = 0 to $T < T_c$.

Glauber Dynamics

► spins flip with probability determined by energy ⇒ nonconserved order parameter.

Kawasaki Dynamics

- neighboring spins exchanged \Rightarrow conserved OP.
- additional parameter $\epsilon =$ fraction of spins up
- appropriate for binary mixtures: $\uparrow =$ Fe, $\downarrow =$ Al.

Kinetic Ising Models

Glauber (spin flip): nonconserved $OP \rightarrow L \sim t^{1/2}$

Kawasaki (spin exchange): conserved $OP \rightarrow L \sim t^{1/3}$

Coarsening Models II: Phase Field Models

Field $\phi(\mathbf{x}, t)$ describes local concentration. Free energy functional:

¥7.

Coarsening Models II: Phase Field Models

Field $\phi(\mathbf{x}, t)$ describes local concentration. Free energy functional:

$$F[\phi] = \int d^d x \left\{ \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right\}$$

Allen-Cahn equation

Nonconserved OP:
$$\frac{\partial \phi}{\partial t} = -\frac{\delta F}{\delta \phi} \Rightarrow \frac{\partial \phi}{\partial t} = \nabla^2 \phi - V'(\phi)$$

Coarsening Models II: Phase Field Models

Field $\phi(\mathbf{x}, t)$ describes local concentration. Free energy functional:

$$F[\phi] = \int d^d x \left\{ \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right\}$$

Allen-Cahn equation

Nonconserved OP:
$$\frac{\partial \phi}{\partial t} = -\frac{\delta F}{\delta \phi} \quad \Rightarrow \quad \frac{\partial \phi}{\partial t} = \nabla^2 \phi - V'(\phi)$$

Cahn-Hilliard equation

Conserved OP:
$$\frac{\partial \phi}{\partial t} = -\nabla \cdot \mathbf{J}$$
 and $\mathbf{J} = -\nabla \frac{\delta F}{\delta \phi}$
 $\Rightarrow \frac{\partial \phi}{\partial t} = -\nabla^2 [\nabla^2 \phi - V'(\phi)]$

Phase Field Models

Allen-Cahn eq: nonconserved $OP \rightarrow L \sim t^{1/2}$

Cahn-Hilliard eq: conserved $OP \rightarrow L \sim t^{1/3}$

Universality?

Glauber

 $L \sim t^{1/2}$

 $L \sim t^{1/3}$

Kawasaki

Allen-Cahn

Cahn-Hilliard

Coarsening Introduction

Theoretical Picture & Universality Conjecture

Asymptotic Defect Dynamics

Asymmetric Mobility — Numerical Test of Conjecture

Summary and Outlook

Theoretical Challenge

- Self-similar scaling state with universal power law growth generic. Demands explanation!
- Characterizing scaling state a starting point for analysis of real systems. Need universality classes!

Theoretical Challenge

- Self-similar scaling state with universal power law growth generic. Demands explanation!
- Characterizing scaling state a starting point for analysis of real systems. Need universality classes!

Renormalization Group Scenario

- ► Critical-like behavior ⇒ dynamical RG fixed point controlling the asymptotic dynamics.
- ▶ Not (yet) tractable a strong-coupling fixed point.

How do we proceed?

Exact Solution — Lifshitz-Slyozov Theory ('58)

- \blacktriangleright Conserved OP coarsening in dilute $\epsilon \rightarrow 0$ limit \Rightarrow isolated droplets
- Derives scaling state, demonstrates its universality.
- Original prediction of $L \sim t^{1/3}$ exponent.

Exact Solution — Lifshitz-Slyozov Theory ('58)

- \blacktriangleright Conserved OP coarsening in dilute $\epsilon \rightarrow 0$ limit \Rightarrow isolated droplets
- Derives scaling state, demonstrates its universality.
- Original prediction of $L \sim t^{1/3}$ exponent.

Assume Scaling, Derive Consequences

- Huse ('86) argued COP $L \sim t^{1/3}$ extends to all ϵ .
- Bray's RG scenario ('89) also gives $L \sim t^{1/3}$.
- ► Bray-Rutenberg energy scaling approach ('94) ⇒ growth exponents.

Exact Solution — Lifshitz-Slyozov Theory ('58)

- \blacktriangleright Conserved OP coarsening in dilute $\epsilon \rightarrow 0$ limit \Rightarrow isolated droplets
- Derives scaling state, demonstrates its universality.
- Original prediction of $L \sim t^{1/3}$ exponent.

Assume Scaling, Derive Consequences

- Huse ('86) argued COP $L \sim t^{1/3}$ extends to all ϵ .
- Bray's RG scenario ('89) also gives $L \sim t^{1/3}$.
- ► Bray-Rutenberg energy scaling approach ('94) ⇒ growth exponents. Explains universality classes!

So why am I here talking about universality classes?

Bray-Rutenberg \Rightarrow growth exponent ($L \sim t^{\alpha}$) universality classes:

- α depends only on conservation law and nature of order parameter
- does not depend on spatial dimension d, volume fraction ε, or microscopic details

So why am I here talking about universality classes?

Bray-Rutenberg \Rightarrow growth exponent ($L \sim t^{\alpha}$) universality classes:

- α depends only on conservation law and nature of order parameter
- does not depend on spatial dimension d, volume fraction ε, or microscopic details

But which quantities are universal?

Conventional wisdom: correlation function $C(\mathbf{r}, t)$ or structure factor $S(\mathbf{k}, t)$ has same universality as the growth exponent.

So why am I here talking about universality classes?

Bray-Rutenberg \Rightarrow growth exponent ($L \sim t^{\alpha}$) universality classes:

- α depends only on conservation law and nature of order parameter
- does not depend on spatial dimension d, volume fraction ε, or microscopic details

But which quantities are universal?

Conventional wisdom: correlation function $C(\mathbf{r}, t)$ or structure factor $S(\mathbf{k}, t)$ has same universality as the growth exponent.

Not true!

Distinct Universality (for conserved scalar OP)

Quantities that affect the correlation function but not the growth exponent:

Trivial

- \blacktriangleright volume fraction ϵ
- \blacktriangleright spatial dimension d
- ... everyone knew that already.

$$\epsilon < 1/2$$

Distinct Universality (for conserved scalar OP)

Quantities that affect the correlation function but not the growth exponent:

Trivial

- \blacktriangleright volume fraction ϵ
- \blacktriangleright spatial dimension d
- ... everyone knew that already.

Less Trivial

• anisotropic surface tension $\sigma(\hat{n})$ (e.g. lsing model)

exact Lifshitz-Slyozov solution for dilute coarsening [BVL & Rutenberg '99; Gildner, Rosenbaum, Fowler, and BVL '09]

Questions

- Does the scaled correlation function have any universality?
- If so, what are its universality classes?
- And, which quantities belong to exponent universality classes, versus correlation function universality classes?

[Higher order correlation functions, curvature distribution, autocorrelation exponents, persistence exponents, growth law amplitudes, ...]

Answer?

Conjecture:

- Growth exponents are a special case. Superuniversal due to constraints
- Correlation function universality reflects domain morphology universality [Ockham, circa 1300], so

focus on the domain morphology!

Answer?

Conjecture:

- Growth exponents are a special case. Superuniversal due to constraints
- Correlation function universality reflects domain morphology universality [Ockham, circa 1300], so

focus on the domain morphology!

 Domain morphology universality reflects defect (domain wall) dynamics universality, so

focus on the defect dynamics!

Coarsening Introduction

Theoretical Picture & Universality Conjecture

Asymptotic Defect Dynamics

Asymmetric Mobility — Numerical Test of Conjecture

Summary and Outlook

Asymptotic Defect Dynamics

What are the dynamical rules for the interfaces?

For a given domain configuration, e.g.

how will it evolve? What is the sequence of future domain configurations?

Use late-time asymptotia to reduce to simpler sharp defect dynamics.

Step 1. Surface Tension

Consider a flat interface at x = 0 with b.c. as shown:

Equilibrium concentration profile given by

$$0 = \mu(\mathbf{x}) = \frac{\delta F}{\delta \phi(\mathbf{x})} = V'(\phi) - c\nabla^2 \phi + \dots$$

Solution $\phi_{int}(x)$ gives free energy per unit interface:

Surface Tension:
$$\sigma \equiv F[\phi_{int}(x)]/A$$

For curved interfaces, $\sigma(\kappa) = \sigma + O(\kappa)$

Step 2. Bulk Mobility

▶ In bulk $\phi \approx \phi_1^{eq}$, so local chemical potential proportional to the supersaturation:

$$\mu(\mathbf{x}) \sim V''(\phi_1^{eq}) \left(\phi(\mathbf{x}) - \phi_1^{eq} \right)$$

Asymptotic current:

$$\mathbf{J} = -M(\phi)\nabla\mu \sim -M(1)V''(1)\nabla\phi$$

Gives diffusion equation in bulk:

$$\frac{\partial \phi}{\partial t} = -\nabla \cdot \mathbf{J} \sim D\nabla^2 \phi$$

-
$$\phi$$
 and μ equilibrate to $abla^2 \mu$ in time $t_{eq} \sim L^2$

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 5. Interface velocity determined by bulk flux to interface:

$$\Delta \phi_{eq} v(\mathbf{x}) = \hat{n} \cdot (\mathbf{J}_{+} - \mathbf{J}_{-}) \Rightarrow v(\mathbf{x}) = \frac{M_{1} \, \hat{n} \cdot \nabla \mu_{1} - M_{2} \, \hat{n} \cdot \nabla \mu_{2}}{\Delta \phi_{eq}}$$

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 5. Interface velocity determined by bulk flux to interface:

$$\Delta \phi_{eq} v(\mathbf{x}) = \hat{n} \cdot (\mathbf{J}_{+} - \mathbf{J}_{-}) \Rightarrow v(\mathbf{x}) = \frac{M_1 \, \hat{n} \cdot \nabla \mu_1 - M_2 \, \hat{n} \cdot \nabla \mu_2}{\Delta \phi_{eq}}$$

Huse: $v \sim \dot{L}$, $\nabla \mu \sim 1/L^2$

Step 3. Gibbs-Thomson at interfaces:

$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x}) + O(\kappa^2)$$

Step 4. Quasistatic in bulk: $\nabla^2 \mu = 0$ since diffusion field equilibrates faster than interfaces move.

Determines $\mu(\mathbf{x})$ everywhere!

Step 5. Interface velocity determined by bulk flux to interface:

$$\Delta \phi_{eq} v(\mathbf{x}) = \hat{n} \cdot (\mathbf{J}_{+} - \mathbf{J}_{-}) \Rightarrow v(\mathbf{x}) = \frac{M_{1} \,\hat{n} \cdot \nabla \mu_{1} - M_{2} \,\hat{n} \cdot \nabla \mu_{2}}{\Delta \phi_{eq}}$$

Huse: $v \sim \dot{L}$, $\nabla \mu \sim 1/L^2 \Rightarrow \dot{L} \sim 1/L^2 \Rightarrow L \sim t^{1/3}$

Take case of equal bulk mobilities: $M_1 = M_2 = M$.

- For all such systems $v(\mathbf{x})$ same at each point along the interface, up to an overall factor $M\sigma/(\Delta\phi_{eq})^2$.
- All systems will evolve through the same sequence of configuration: they have the same defect trajectories.
- ► In rescaled time $\tau = \frac{M\sigma}{(\Delta\phi_{eq})^2}t$, all systems evolve identically!
- If $M_1 \neq M_2$, the above still hold for all systems with the same ratio M_1/M_2 .

Domain Morphology Universality

Conjecture: Domain morphology has same universality as the defect trajectories.

Wrong if

- different trajectories can lead to the same morphology (superuniversal)
- different morphologies possible from same trajectories (history dependent)

Corollary: in rescaled time, growth law $L \sim A\tau^{\alpha}$ is determined by the morphology \Rightarrow the growth law amplitude should have the same universality as the correlation function.

Predicted Universality Classes — conserved scalar OP

- ► anisotropic σ(n̂) modifies μ(x) at interface, so morphology depends on σ(n̂, T).
- ► field-dependent mobility $M(\phi)$, specifically the ratio $M(\phi_1^{eq})/M(\phi_2^{eq})$.

• volume fraction ϵ and spatial dimension d.

Morphology universality determines correlation function, growth law amplitude, persistence exponents,

Coarsening Introduction

Theoretical Picture & Universality Conjecture

Asymptotic Defect Dynamics

Asymmetric Mobility — Numerical Test of Conjecture

Summary and Outlook

Asymmetric Cahn-Hilliard Equation

Field $\phi(\mathbf{x}, t)$ describes local concentration. Free energy functional:

T7 A

$$F[\phi] = \int d^d x \left\{ \frac{1}{2} (\nabla \phi)^2 + V(\phi) \right\}$$

$$\mu(\mathbf{x}) = \frac{\delta F}{\delta \phi(\mathbf{x})} = -\nabla^2 \phi + V'(\phi)$$

$$V$$

$$\psi = \frac{\delta F}{\phi_1^{eq} \phi_2^{eq}} \phi$$

Conservation:
$$\frac{\partial \phi}{\partial t} = -\nabla \cdot \mathbf{J}$$
 and $\mathbf{J} = -M(\phi) \nabla \frac{\delta F}{\delta \phi}$

where $M(\phi) = 1 + m\phi$

 \Rightarrow asymmetric Cahn-Hilliard Eq.

Define
$$R \equiv \frac{M(1)}{M(-1)}$$

Power Law Growth of Domain

Structure Factor — Scaling Collapse

$$S(\mathbf{k},t) = t^{2/3} g(kt^{1/3})$$

Structure Factor — Different R

Little R dependence, if there is any!

Number of Domains

Faster phase has more domains

Ratio of Number of Domains at $t = 10^4$

Coarsening Introduction

Theoretical Picture & Universality Conjecture

Asymptotic Defect Dynamics

Asymmetric Mobility — Numerical Test of Conjecture

Summary and Outlook

Conclusions

- The growth law exponent and the correlation function do not have the same universality.
- The growth law amplitude and the correlation function do have the same universality, determined by the morphology.
- These universality classes apply to the complete asymptotic scaling state, and might be determined defect dynamics.
- Numerical tests of the asymmetric Cahn-Hilliard equation offer preliminary confirmation.
- Structure factor is not a sensitive measure need to look at domain number

Future Work

- Generalize defect trajectory analysis (vector order parameter, liquid crystals, hydrodynamics, facets, froths, ...). With Steven Watson.
- For numerical tests, we need larger system sizes to push runs to later times.
- We'll investigate the Cahn-Hilliard equation with asymmetric potential.