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Why Study Classical Particles . . .

. . . when the world is quantum mechanical?

Answer: room temperature and molecular masses

I typical momentum given by p2/2m ∼ kT ⇒ p ∼
√
mkT

I de Broglie wavelength λ = h/p ∼ h/
√
mkT

I For T = 300 K and typical molecular masses, λ ∼ 10−11 m

I Typical molecular separations 10−10 m and higher

Conclusion:

Quantum interference effects negligible, classical models of
molecular interactions work fine at 300 K.



Stochastic Particle Models

Diffusion:

Particles on a lattice undergoing
random walks.

Diffusion-Limited Reactions:

One or more species of random-walking particles, with a reactions
occuring when particles occupy the same lattice site

?
Α+Α→Α Α+Β→∅



Stochastic Classical Particles on a Lattice

Consider a set of lattice sites labeled i = 1, 2, 3, . . . , and each site
is occupied by n1, n2, n3, . . . particles.

i

ni

Define

I α = a particular state, i.e., α = {n1, n2, n3, . . . }
I P (α, t) = the probability of obtaining state α at time t.



Probability Master Equation

Dynamical processes (hops, reactions, decays) will cause a change
of state from α to β.

wα→β = rate of transition from α to β, defines dynamics

Master Equation

d

dt
P (α, t) =

∑
β

[
wβ→αP (β, t)︸ ︷︷ ︸

flow into α

−wα→βP (α, t)︸ ︷︷ ︸
flow out of α

]

Note:
∑

α P (α, t) = 1 preserved by the master equation
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Example: Radioactive Decay

Consider identical particles at a single site that undergo radioactive
decay at rate λ.

The rate for a transition from n to m particles is

wn→m =

{
0 for m 6= n− 1
nλ for m = n− 1

and the master equation is

d

dt
P (n, t) = λ

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]

Wait! That doesn’t look like exponential decay . . .
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From Master Equation to Differential Equation

Let ρ(t) = 〈n〉 =
∑

n nP (n, t) be the average number of particles
at time t. Then

ρ̇ =
∑
n

nṖ (n, t) =
∑
n

n

[
λ(n+ 1)P (n+ 1, t)− λnP (n, t)

]

= λ
∑
n

n(n+ 1)P (n+ 1, t)− λ
∑
n

n2P (n, t)

= λ
∑
m

(m− 1)mP (m, t)− λ
∑
n

n2P (n, t)

= −λ
∑
m

mP (m, t)

= −λρ
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Example: A + A→ 0 Reaction

Again, consider a single lattice site, with the rule that a pair of
particles may annihilate each other. The rates are

wn→m =

{
0 for m 6= n− 2
n(n− 1)λ for m = n− 2

and the master equation is

d

dt
P (n, t) = λ

[
(n+ 2)(n+ 1)P (n+ 2, t)− n(n− 1)P (n, t)

]



Example: Hop

Now consider two sites, i = 1
and 2, with a rate Γ of
hopping from site 1 to site 2.

1 1 22

4Γ

w(n1,n2)→(m1,m2) =

{
0 for m1 6= n1 − 1 or m2 6= n2 + 1
n1Γ for m1 = n1 − 1 and m2 = n2 + 1

and the master equation is

d

dt
P (n1, n2, t) = Γ

[
(n1 + 1)P (n1 + 1, n2 − 1, t)− n1P (n1, n2, t)

]
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Diffusion

Consider a one-dimensional chain of
lattice sites i = 1, 2, . . . and let all
particles hop left or right with rate
Γ. The master equation is

i

ni

Γ
3Γ

d

dt
P (α, t) = Γ

∑
〈ij〉

[
(ni + 1)P (ni + 1, nj − 1, . . . , t)− niP (α, t)

(nj + 1)P (ni − 1, nj + 1, . . . , t)− njP (α, t)
]

Define ρ(x, t) =
∑

α niP (α, t) where x = i∆x.

For small ∆x this becomes the diffusion equation:

∂ρ

∂t
= D

∂2ρ

∂x2
D = Γ∆x2 = diffusion constant.
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Reaction-Diffusion Systems

One or more species of particles undergoing random walks on a
lattice, with a reactions occuring for particles on the same lattice
site

?
Α+Α→Α Α+Β→∅

A+A→ 0: The density of particles decays as

ρ(t) =


Ct−1 for d > 2
Ã ln t/Dt for d = 2
A(Dt)−d/2 for d < 2

where A and Ã are universal numbers!
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Reaction-Diffusion Master Equation

d

dt
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Yuck!



Reaction-Diffusion Master Equation

d

dt
P (α, t) =

D

∆x2

∑
〈ij〉

[
(ni + 1)P (ni + 1, nj − 1, . . . , t)− niP (α, t)

+ (nj + 1)P (ni − 1, nj + 1, . . . , t)− njP (α, t)
]

+ λ
∑
i

[
(ni + 2)(ni + 1)P (. . . , ni + 2, . . . , t)

− ni(ni − 1)P (α, t)
]

Yuck!



Quantum Mechanics for Classical Particles

Dynamics of Stochastic Classical Particles

Examples: Decay, Hops, and Reactions

Reaction-Diffusion Systems

Mapping to Quantum Mechanics



Quantum Harmonic Oscillator

I Quantum harmonic oscillator
eigenstates |n〉 are labeled by an
integer n ≥ 0.

I Eigenstate |n〉 has energy
En =

(
n+ 1

2

)
~ω

n=0

n=1

n=2

I Raising and lowering operators â† and â step from one
eigenstate to the next:

â†|n〉 = |n+ 1〉 â|n〉 = n|n− 1〉

I Ground state |0〉 obeys â|0〉 = 0, and |n〉 = (â†)n|0〉.

I The raising and lowering operators do not commute:

[â, â†] ≡ ââ† − â†â = 1



Doi Representation [Doi ’76]

integer n ≥ 0 =

{
lattice site occupation number

label for QHO eigenstate

Why not introduce a QHO at each lattice site?

Then state

α = (n1, n2, . . . ) ⇔ |α〉 = |n1〉 ⊗ |n2〉 ⊗ . . .

We’ll need a pair of creation and annihilation operators â†i , âi for
each site. Then

|ni〉 = (â†i )
ni |0〉

and we can write the state α as

|α〉 =
∏
i

(â†i )
ni |0〉
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Doi Representation, part II

We can pack the probability function into a quantum state:

|φ(t)〉 =
∑
α

P (α, t)|α〉

and re-write the master equation in Schrödinger-like form:

d

dt
|φ(t)〉 = −Ĥ|φ(t)〉

Why do this? Because it is a simpler description of the dynamics.
For A+A→ 0 reaction diffusion we get

Ĥ =
D

∆x2

∑
〈ij〉

(â†i − â
†
j)(âi − âj)− λ

∑
i

(1− â†2i )â2
i
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A + A→ 0 on a Single Site

Master equation:

d

dt
P (n, t) = λ

[
(n+ 2)(n+ 1)P (n+ 2, t)− n(n− 1)P (n, t)

]
Multiply by |n〉 and sum over n:

d

dt
|φ(t)〉 = λ

∑
n

P (n+2, t) (n+ 2)(n+ 1)|n〉−λ
∑
n

P (n, t)n(n− 1)|n〉

= λ
∑
n

P (n+ 2, t) â2|n+ 2〉 − λ
∑
n

P (n, t) â†2â2|n〉

= λ(â2 − â†2a2)
∑
n

P (n, t) |n〉

= λ(1− â†2)â2|φ(t)〉 = −Ĥ|φ(t)〉
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Hop from Site 1 to Site 2

Master Equation

d

dt
P (n1, n2, t) = Γ

[
(n1+1)P (n1+1, n2−1, t)− n1P (n1, n2, t)

]
Multiply by |n1, n2〉 and sum over n1 and n2:

d

dt
|φ(t)〉 = Γ

∑
n1,n2

P (n1+1, n2−1, t) (n1+1)|n1, n2〉

− Γ
∑
n1,n2

P (n1, n2, t)n1|n1, n2〉

= Γ
∑
n1,n2

P (n1+1, n2−1, t) â†2â1 |n1+1, n2−1〉

− Γ
∑
n1,n2

P (n1, n2, t) â
†
1â1 |n1, n2〉

= Γ(â†2 − â
†
1)â1 |φ(t)〉



Diffusion

I Hop from site 1 to site 2:

Ĥ1→2 = Γ(â†1 − â
†
2)a1

I Allow for the reverse hop with the same rate:

Ĥ1↔2 = Γ(â†1 − â
†
2)(â1 − â2)

I For hops between all neighboring lattice sites:

ĤD =
D

(∆x)2
∑
〈ij〉

(â†i − â
†
j)(âi − âj)



Summary

I Mapping to quantum description simplifies the master
equation by getting rid of pesky factors involving n.

I Fock space description natural for identical particles acting
independently, not restricted to quantum mechanics

I Solution for reaction diffusion system involves mapping the
quantum hamiltonian to a quantum field theory and using
Feynman diagrams . . . a lot of fun!
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