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Quantum Mechanics for Classical Particles

Dynamics of Stochastic Classical Particles



Why Study Classical Particles . . .

...when the world is quantum mechanical?

Answer: room temperature and molecular masses

> typical momentum given by p?/2m ~ kT = p~ VmkT

» de Broglie wavelength A = h/p ~ h/v/mkT

» For T = 300K and typical molecular masses, A ~ 10~ m

» Typical molecular separations 107! m and higher
Conclusion:

Quantum interference effects negligible, classical models of
molecular interactions work fine at 300 K.



Stochastic Particle Models

Diffusion: | &>
Particles on a lattice undergoing *

random walks. +§ %
e

Diffusion-Limited Reactions:

One or more species of random-walking particles, with a reactions
occuring when particles occupy the same lattice site

A+A LA i* A+B - [ * T
iR Rirs

> \ \




Stochastic Classical Particles on a Lattice

Consider a set of lattice sites labeled 4 =1, 2, 3, ..., and each site
is occupied by ni, ng, n3, ... particles.
n .
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Define
» « = a particular state, i.e., « = {nj,na,n3,...}

» P(a,t) = the probability of obtaining state « at time ¢.



Probability Master Equation

Dynamical processes (hops, reactions, decays) will cause a change
of state from « to (3.

We—g = rate of transition from o to 3, defines dynamics

Master Equation

7P (o, t) Z [wﬁ_)a — Wa—pP(a,t)
B TV

flow into « flow out of a

Note: > P(c,t) =1 preserved by the master equation



Quantum Mechanics for Classical Particles

Examples: Decay, Hops, and Reactions



Example: Radioactive Decay

Consider identical particles at a single site that undergo radioactive
decay at rate .

The rate for a transition from n to m particles is

0 form#n-—1
Wp—sm, =
e n\ form=n-—1

and the master equation is

SPt) = A|(n+ DP(n-+1,0) —n P(n,)



Example: Radioactive Decay

Consider identical particles at a single site that undergo radioactive
decay at rate .

The rate for a transition from n to m particles is

0 form#n-—1
Wp—sm, =
e n\ form=n-—1

and the master equation is

SPt) = A|(n+ DP(n-+1,0) —n P(n,)

Wait! That doesn’t look like exponential decay ...



From Master Equation to Differential Equation

Let p(t) = (n) =, nP(n,t) be the average number of particles
at time ¢. Then

p= an(n,t) = Zn[)\(n +1)P(n+1,t) — AnP(n,t)



From Master Equation to Differential Equation

Let p(t) = (n) =, nP(n,t) be the average number of particles
at time ¢. Then

p= Z nP(n,t) = Z n [)\(n +1)P(n+1,t) — AnP(n, t)]

=AY nn+1)P(n+1,t) = A> n’P(n,t)
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From Master Equation to Differential Equation

Let p(t) = (n) =, nP(n,t) be the average number of particles
at time ¢. Then

p= ZnP(n,t) = Zn[)\(n—i- 1)P(n+1,t) — )\nP(n,t)]
=AY nn+1)P(n+1,t) = A> n’P(n,t)
—)\Z — 1)mP(m,t) )\anPnt

= —)\ZmP(m, t)



Example: A+ A — 0 Reaction

Again, consider a single lattice site, with the rule that a pair of
particles may annihilate each other. The rates are

0 form #n—2
Wn—m =
nn—1)\ form=n-—2

and the master equation is

%P(n, 1) = A+ 2(n+ )P +2,1) — nln— 1)P(n,1)]



Example: Hop

4T
Now consider two sites, i = 1 T
and 2, with a rate I of 3
hopping from site 1 to site 2. E
0 dH
1 2 | 1 2

0 formi#n1—1 or mog#ns+1

nl' formi=ni—1land mg =n9+1

W(ny,ne)—(m1,me) — {
and the master equation is

d
%P(nl,ng,t) = F[(nl + 1)P(n1 + 1,n9 — 1,t) — n1P(n1,n2,t)



Quantum Mechanics for Classical Particles

Reaction-Diffusion Systems



Consider a one-dimensional chain of n; 3r

lattice sites ¢ =1, 2, ...and let all _/1 r
particles hop left or right with rate — —K\

I'. The master equation is | | H

d
—Pozt FZ{n,—i—l (ni +1,n;—1,...,t) —n;P(a, t)

(nj+1)P(ni —1,mnj +1,...,t) — an(a,t)}



Consider a one-dimensional chain of n; 3r

lattice sites ¢ =1, 2, ...and let all _/i r
particles hop left or right with rate — —K\

I'. The master equation is | | H

d

—Pozt FZ{nz—i—l (ni +1,n;—1,...,t) —n;P(a, t)
(nj+1)P(ni —1,mnj +1,...,t) — an(a,t)}

Define p(z,t) = >, niP(a,t) where x = iAx.

For small Ax this becomes the diffusion equation:

op 0?p

3 = 92 D = I'Ax? = diffusion constant.
T



Reaction-Diffusion Systems

One or more species of particles undergoing random walks on a
lattice, with a reactions occuring for particles on the same lattice
site

A+A A i* A+B [ * Tb
AP THT




Reaction-Diffusion Systems

One or more species of particles undergoing random walks on a
lattice, with a reactions occuring for particles on the same lattice
site

A+A A i* A+B [ * Tﬁ
AP THT

A+ A — 0: The density of particles decays as

Cct! for d > 2
p(t) =< Alnt/Dt for d =2
A(Dt)= 42 ford < 2

where A and A are universal numbers!



Reaction-Diffusion Master Equation

ﬁPat (Z[nz—i-l (ni+1,n;—1,...,t) —n;P(a, )

+ (nj+1)P(n; — 1,nj +1,...,t) —njP(a,t)

+)\Z[(ni+2)(ni+1)P(...,ni+2,...,t)

%

—ni(n; — 1)P(a,t)]



Reaction-Diffusion Master Equation

ﬁPat (Z[nz—i-l (ni+1,n;—1,...,t) —n;P(a, )

+ (nj+1)P(n; — 1,nj +1,...,t) —njP(a,t)
+>‘Z[(ni+2)(ni+1)P(...,ni+2,...,t)

%

—ni(n; — 1)P(a,t)]

Yuck!



Quantum Mechanics for Classical Particles

Mapping to Quantum Mechanics



Quantum Harmonic Oscillator

» Quantum harmonic oscillator
eigenstates |n) are labeled by an

. =2
integer n > 0. "

n=1

» Eigenstate |n) has energy n=0

E, = (n+%)hw

» Raising and lowering operators a' and @ step from one
eigenstate to the next:

alln) = |n +1) alny = njn — 1)
» Ground state |0) obeys a|0) = 0, and |n) = (a)"|0).
» The raising and lowering operators do not commute:

[a,a') = aa’ —afa =1



Doi Representation [Doi '76]

lattice site occupation number

integer n > 0 = .
label for QHO eigenstate

Why not introduce a QHO at each lattice site?



Doi Representation [Doi '76]

lattice site occupation number

integer n > 0 = .
label for QHO eigenstate

Why not introduce a QHO at each lattice site? Then state
a=(ny,ne,...) & la) =|n1) @ [n2) ® ...

We'll need a pair of creation and annihilation operators &,}L, a; for
each site. Then
_ (atyna
i) = (a;)"™[0)

and we can write the state o as

la) =[] (@)™ o)

i



Doi Representation, part Il

We can pack the probability function into a quantum state:
[6(1)) = > Pla,t)|a)
[0
and re-write the master equation in Schrodinger-like form:

d .
2 19() = —H|o(t))



Doi Representation, part Il

We can pack the probability function into a quantum state:
[6(1)) = > Pla,t)|a)
[0
and re-write the master equation in Schrodinger-like form:

d .
2 19() = —H|o(t))

Why do this? Because it is a simpler description of the dynamics.
For A+ A — 0 reaction diffusion we get




A+ A — 0 on a Single Site

Master equation:

%P(n,t) = [+ 2+ VP +2,0) —n(n — 1)P(n.1)]

Multiply by |n) and sum over n:

7@ —)\ZPn+2t)(n+2)(n+1|n )\ZPnt n(n —1)|n)



A+ A — 0 on a Single Site

Master equation:

%P(n,t) = [+ 2+ VP +2,0) —n(n — 1)P(n.1)]

Multiply by |n) and sum over n:

7@ —)\ZPn+2t)(n+2)(n+1|n )\ZPnt n(n —1)|n)

=AY P(n+2,t)a%ln+2) = XY _ P(n,t)al*a’n)

= Aa® - a%a®) Y P(n,t) |n)

= A1 —a")a’(p(t)) = —H|o(t))



Hop from Site 1 to Site 2

Master Equation

d
$P(n1, ng,t) = I‘{(nl—i—l)P(nl—i—l,nQ—l,t) — an(nl, ng,t)]

Multiply by |n1,n92) and sum over ny and na:

=T Z P(nl—i—l,ng—l,t) (n1+1)]n1,ng>

ni,n2
-T Z 7’Ll,7’L2, 771|n1an2>
ni,n2
=T Y P(m+1,n2—1,¢) abay [nm1+1,ny—1)
ni,n2

_F Z n17n27 a/1 |n17n2>

ni,n2

= I(a} — a})ar [o(t))



» Hop from site 1 to site 2:
Hy_p =T(al —ab)a
» Allow for the reverse hop with the same rate:
Hyep =T(a] — a)(ar — ap)

» For hops between all neighboring lattice sites:




» Mapping to quantum description simplifies the master
equation by getting rid of pesky factors involving n.

» Fock space description natural for identical particles acting
independently, not restricted to quantum mechanics

» Solution for reaction diffusion system involves mapping the
quantum hamiltonian to a quantum field theory and using
Feynman diagrams ... a lot of fun!
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