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Coarsening . . .

is a nonequilibrium relaxational process in which the characteristic
length scale grows with time.

Many examples in nature:

binary alloys

polycrystals

magnetic domains

binary fluids

epitaxial growth

salad dressing

polymer blends

soap froths

colloids

liquid crystals

faceted surfaces

and more . . .



2D Dry Soap Froth

t = 1.95 h t = 21.5 h t = 166 h

Glazier, Gross, and Stavans, Phys. Rev. A 36, 306 (1987).

Self-similarity!



Chiral Liquid Crystals

Sicilia, et al., Phys. Rev. Lett. 101, 197801 (2008).



(a) Colloidal Suspension and (b) Polymer Solution

Tanaka, Nishikawa, and Koyama, J. Phys. Cond. Matt. 17, L143 (2005).

Universality!



Homoepitaxial Islands

Cu on a Cu(100) surface

Pai et al., Phys. Rev. Lett. 79, 3210 (1997).



Random Copolymers – PEH/PEB

Shimizu et al., Polymer 45, 7061 (2004).



Phase Ordering Dynamics (binary alloys, polymer blends)

Rapid quench into the forbidden
region of a phase diagram

system equilibrates locally into
either φeq

1 or φeq
2 φφeq

1 φeq
2

Tf

T

↔
L(t)

F − Feq ∝ amount of interface

dissipative dynamics (dF/dt ≤ 0)
gives coarsening



Basic Features of Coarsening

Sharp defects

defect size ξ fixed, asymptotically L(t)� ξ

Self-similarity

domain structure statistically invariant when rescaled by L(t).

⇒ C(r, t) = f
(
r/L(t)

)
Power law growth

characteristic scale L ∼ tα

Universality

exponent α determined by only a few general features:
conservation laws and nature of order parameter



Growth Exponent via Dynamical Scaling Hypothesis

Conserved order parameter:

µ(x) =
σ

∆φ
κ(x) ∼ 1/L

J ∼ ∇µ ∼ 1/L2

v ∝ [J ] ∼ 1/L2

x

L

But v ∼ L̇, so L̇ ∼ 1/L2 ⇒ L ∼ t1/3 [Huse ’86]

Bray-Rutenberg Energy Scaling [’94]

Generalized to surface, line, or point defects with and without
conservation laws.

Dynamical Scaling ⇒ Growth Exponent Universality Classes
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But We Can’t Prove Dynamical Scaling

Scaling can be derived in a few special cases: LS theory and
ABCS theory (and some exact solutions in 1D).

But so far no RG calculation for coarsening has been found!

Nevertheless,

Dynamical Scaling ⇒ Growth Exponent Universality Classes
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Coarsening Models I: Kinetic Ising Models

Lattice of spins si = ±1, with hamiltonian H = −J
∑
〈ij〉

sisj

Spins initially random (Ti =∞). Quench to T < Tc . . .

Glauber Dynamics

spins flip with probability determined by energy
⇒ nonconserved OP.

Kawasaki Dynamics

neighboring spins exchanged ⇒ conserved OP.

additional parameter ε = fraction of spins up

appropriate for binary mixtures: ↑= Cu, ↓= Ni.
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Kinetic Ising Models

Glauber: spin flip = nonconserved OP ⇒ L ∼ t1/2

Kawasaki: spin exchange = conserved OP ⇒ L ∼ t1/3



Coarsening Models II: Phase Field Models

Field φ(x, t) describes local concentration. Free energy functional:

F [φ] =
∫
ddx
{

1
2(∇φ)2 + V (φ)

}
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Allen-Cahn equation

Nonconserved OP:
∂φ

∂t
= −δF

δφ
⇒ ∂φ

∂t
= ∇2φ− V ′(φ)

Cahn-Hilliard equation

Conserved OP:
∂φ

∂t
= −∇ · J and J = −∇δF

δφ

⇒ ∂φ

∂t
= −∇2[∇2φ− V ′(φ)]
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Phase Field Models

Allen-Cahn: nonconserved OP ⇒ L ∼ t1/2

Cahn-Hilliard: conserved OP ⇒ L ∼ t1/3



Nonconserved: L ∼ t1/2 Conserved: L ∼ t1/3

Ising

Phase
Field



Compare to Experiment

Polymer Blend AFM Image Cahn-Hilliard Simulation

O’Mahony, et al. in Thermodynamics —

Systems in Equilibrium and Non-Equilibrium,

Moreno-Piraján, Ed. (2011).



Is the Domain Structure Universal?

It is for equilibrium criticality (percolation, Ising model, etc.)

Determined by RG calculations of correlations, cluster size
distributions, etc, but we don’t have an RG fixed point in
hand.

The domain structure is universal for some special cases:
LS theory and ABCS theory . . .



Lifshitz-Slyozov [’58]: applies in dilute limit ε→ 0

Isolated drops of A in
supersaturated matrix of B

Large drops grow, small
drops shrink

Original derivation of
L ∼ t1/3

Produces scaling drop size
distribution

n(R, t) =
1

L(t)4
f

(
R

L(t)

)
Universal!

L

 0  0.5  1  1.5
f(

x
)

x = R/L(t)



Arenzon, Bray, Cugliandolo, & Sicilia, PRL (2007)

For nonconserved OP in d = 2:

curvature driven interfaces: v = λ
2πκ

Hull areas decay as

dAh
dt

= −
∮
P
v dl = − λ

2π

∮
P
κ dl = −λ
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Initial distribution given by percolation [Cardy-Ziff ’03]

Result:

n(Ah, t) =
1

4π
√

3
(Ah + λt)−2 =

1

t2
f(Ah/t)

Scales as L ∼
√
Ah ∼ t1/2 and universal



Is the Domain Structure Universal?

It is for equilibrium criticality (percolation, Ising model, etc.)

Determined by RG calculations of correlations, cluster size
distributions, etc, but we don’t have an RG fixed point in
hand.

The domain structure is universal for some special cases:
LS theory and ABCS theory . . .

. . . so it is often assumed that the structure is universal, with
the same universality classes as the growth exponent.

Not True!



Is the Domain Structure Universal?

It is for equilibrium criticality (percolation, Ising model, etc.)

Determined by RG calculations of correlations, cluster size
distributions, etc, but we don’t have an RG fixed point in
hand.

The domain structure is universal for some special cases:
LS theory and ABCS theory . . .

. . . so it is often assumed that the structure is universal, with
the same universality classes as the growth exponent.

Not True!



Distinct Universality (for conserved scalar OP)

Quantities that affect the domain structure but not the growth
exponent:

Trivial

volume fraction ε

spatial dimension d

ε = 1/2 ε < 1/2
Less Trivial

anisotropic surface tension σ(n̂) (e.g. Ising model)

σ(n̂) exact Lifshitz-Slyozov solution for
dilute coarsening

[BVL & Rutenberg PRL ‘99; Gildner,

Rosenbaum, Fowler, and BVL, in prep.]



So What Does Determine the Structure?

Proposal: Memory Erasure Hypothesis

Asymptotically, the system loses memory of initial short-range
correlations in the structure.

Eventually, the structure will be determined solely by the
asymptotic dynamics of the defects.

Combined:

Dynamic Scaling Hypothesis ⇒ Growth Exponent

Memory Erasure Hypothesis ⇒ Domain Structure
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Asymptotic Defect Dynamics

What are the dynamical rules for the interfaces?

For a given domain configuration, e.g.

how will it evolve? What is the sequence of future domain
configurations?

Use late-time asymptotia to reduce to simpler sharp defect
dynamics.



Example: conserved scalar OP with isotropic σ

Gibbs-Thomson at interfaces:

µ(x) =
σ

∆φeq
κ(x) +O(κ2)

Quasistatic in bulk: ∇2µ = 0 since
diffusion field equilibrates faster than
interfaces move.

Determines µ(x) everywhere!

Current driven by chemical potential gradient: J ∼ −M(φ)∇µ

Interface velocity determined by bulk flux to interface:

∆φeq v(x) = n̂ · (J+ − J−) ⇒ v(x) =
M1 n̂ · ∇µ1 −M2 n̂ · ∇µ2

∆φeq
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Example: conserved scalar OP with isotropic σ

Take case of equal bulk
mobilities: M1 = M2 = M .

For all such systems v(x) same at each point along the
interface, up to an overall factor Mσ/(∆φeq)

2.

All systems will evolve through the same sequence of
configurations: they have the same defect dynamics.

In universal time τ = Mσ
(∆φeq)2

t, all systems evolve identically

If M1 6= M2, the above still hold for all systems sharing the
same ratio RM = M1/M2.



Predicted Structure Universality Classes — conserved OP

anisotropic surface tension modifies µ(x) at interface, so
structure depends on σ(n̂, T ).

Mobility ratio RM = M(φeq1 )/M(φeq2 ).

volume fraction ε and spatial dimension d.

and nothing more!

Highly constrained growth exponent is superuniversal.

Most quantities follow domain structure universality classes:
correlation functions, growth law amplitude, persistence exponents,
etc.
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Coarsening with Asymmetric Mobility

Cahn-Hilliard with Field-Dependent Mobility:

∂φ

∂t
= ∇ ·

{
M(φ)∇

(
V ′(φ)−∇2φ

)}

Mobility M = 1 +mφ, with 0 ≤ m ≤ 1

RM ≡
M(1)

M(−1)
=

1 +m

1−m

−1 1 φ

M

Simulation 2-D lattice, from 2562 up to 40962, using stable
semi-implicit methods that allows ∆t ∼ t2/3 as the interfaces
slow down, v ∼ t−2/3 [Eyre ’98, BVL & Rutenberg, ’03]



Growth Law [Yasuda, BVL, & Rutenberg, in prep.]
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Structure Factor Scaling
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Structure Factor for various R
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No discernible dependence on RM ! What’s going on?



Cluster Density, R = 1
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Cluster Density for Various R
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Different Types of Asymmetry

So asymmetric mobility creates an asymmetric domain number.
Maybe this would happen for any asymmetry in the CH equation?

Consider an asymmetric potential:

V = 1
4(1− φ2)2(1 + cφ)2

 0
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Evolve via CH eq:

φ̇ = M∇2
(
−∇2φ+ V ′a(φ)

)
Define asymmetry parameter RV = V ′′(1)/V ′′(−1):



Asymmetric Potential [VanNess & BVL, in prep.]

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1  10  100  1000  10000  100000  1e+06

N
u
m

b
e
r 

o
f 
D

o
m

a
in

s

Time

phaseA
phaseB



Asymmetric Potential: Switched Off
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Asymmetric Potential: Ratio of Off versus On
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Conclusions

The growth law exponent and the domain structure do not
have the same universality.

The growth law amplitude and the structure do have the same
universality (or lack thereof)

Memory erasure hypothesis says structure gets universality
from the asymptotic dynamics.

Numerical tests of the asymmetric Cahn-Hilliard equation
challenge the MEH.

Structure factor is not a sensitive measure — need to look at
domain number.



Future Work

Still worth more testing of memory erasure hypothesis.

Generalize defect dynamics analysis (vector order parameter,
liquid crystals, hydrodynamics, facets, froths, . . . ).

For numerical tests, we need larger system sizes to push runs
to later times.

Generalizing ABCS theory:

Should percolation apply for initial hull distributions with
conserved dynamics? Our numerical data do not support this.



Thanks!



Kate’s Plots: Mobility Switched Off
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Kate’s Plots: Mobility Ratio
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