PHYS 317 - Reading Assignment #22

  1. Lowercase 'n' appears multiplying both epsilon and mu in equation (7.20). Explain what 'n' is, and why it's in each term.

    The Gibbs factor is e-(E-n*mu)/kT, where n is the number of particles in a given state. This state has energy epsilon, so the energy for having n particles in this state is simply E = n*epsilon. The Gibbs factor already has a factor of n*mu, so this results in (7.20).

  2. Why can't epsilon be less than mu for a Bose gas?

    Because then the Gibbs factor would increase for increasing 'n', without any bound, saying essentially that having more particles is always more probable. This quickly blows up on you and makes your probabilities unnormalizable.

  3. What is the condition on mu and kT for ``classical'' statistics to be valid (that is, Bose, Fermi, and classical statistics all agree)?

    We need mu << -kT
Back to the PHYS 317 home page.