Div, Grad, and Curl	Coulomb and Gauss	Potential and Work	Miscellaneous
q	q	q	q
2q	2q	2q	2q
3q	3q	3q	3q

Given a general scalar field $T(\mathbf{r})$ and a vector field $\mathbf{v}(\mathbf{r})$, which second derivatives can be taken that are identically zero?

For the vector field

$$\mathbf{v} = -xy^2\,\hat{\mathbf{x}} + zy\,\hat{\mathbf{y}} - 6\,\hat{\mathbf{z}}$$

determine the line integral $\int_{\mathcal{P}} \mathbf{v} \cdot d\mathbf{l}$ from the point (0,0,0) to (1,1,0) along the path $y=x^2$, z=0.

For the vector field (in cylindrical coordinates)

$$\mathbf{v} = s(1 + \cos\phi)\,\hat{\mathbf{s}} + s(1 + \sin\phi)\,\hat{\phi} - sz\,\hat{\mathbf{z}}$$

determine the surface integral $\int_{S} \mathbf{v} \cdot d\mathbf{a}$ over the cylindrical surface defined by s = R and 0 < z < L.

Given the electric field

$$\mathbf{E}(\mathbf{r}) = 2xy\,\hat{\mathbf{x}} + (x^2 - 2yz)\,\hat{\mathbf{y}} - y^2\,\hat{\mathbf{z}}$$

determine the charge density $\rho(\mathbf{r})$.

Given the charge density $\rho({\bf r})=kr,$ determine the electric field ${\bf E}({\bf r}).$

Given a half-circle of charge density λ as shown, determine ${\bf E}$ at the origin.

Return

$$\frac{1}{2} \int_{\mathcal{V}} \rho V \, d\tau = \frac{\epsilon_0}{2} \int_{\mathcal{V}} E^2 \, d\tau$$

Is this a true statement? Why or why not?

Given a sphere of radius R with uniform surface charge density σ , determine the potential V at the point $\mathbf{r} = (R/2) \hat{\mathbf{z}}$.

Calculate the energy store in the following charge configuration: a sphere of radius a with total charge q spread uniformly on the surface, surrounded by a concentric sphere of radius b > a with total charge -q also uniformly spread on the surface.

Evaluate this integral:

$$\int r^2 \sin(\mathbf{r} \cdot \mathbf{a}) \delta^3(\mathbf{b} - \mathbf{r}) \, d\tau$$

where integration runs over all space.

Given the potential $V({\bf r})=xy^2z^3,$ determine the charge density $\rho({\bf r}).$

A conducting spherical shell of inner radius a and outer radius b carries a total charge Q. A point charge q is placed at the center. Determine the surface charge densities on the inner and outer surfaces of the conductor.

▲ Return