PHYS 333 Test 3 Review

December 10, 2006

Linear Dielectric

Consider infinite parallel plates, one at z = 0 with charge density σ and the other at z = d with charge density $-\sigma$.

In between the plates is a linear dielectric (so $\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$) whose susceptibility varies with distance as $\chi_e = 2z$.

Find D, E, P, and the bound charge.

Answer:
$$\mathbf{D} = \sigma \, \hat{\mathbf{z}}, \, \mathbf{E} = \frac{\sigma}{\epsilon_0(1+2z)} \, \hat{\mathbf{z}}, \, \mathbf{P} = \frac{2\sigma z}{1+2z} \, \hat{\mathbf{z}}$$

 $\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}} = 0 \text{ at bottom}$
 $\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}} = \frac{2\sigma d}{1+2d} \text{ at top}$
 $\rho_b = -\nabla \cdot \mathbf{P} = 2\sigma \frac{2z-1}{(2z+1)^2}$

Magnetic Forces and Biot-Savart

On the board is shown a segment of a current loop, and a positively charged particle with a particular velocity.

Determine the direction of the force on the particle, or if the force is zero.

Ampere's Law

A current flows down a cylindrical tube of radius a oriented along the z-axis. The current density is given by $\mathbf{J} = ks \, \hat{\mathbf{z}}$.

Determine \mathbf{B} .

Answer:
$$\mathbf{B} = \frac{\mu_0 k s^2}{3} \hat{\phi}$$
 for $s < a$
 $\mathbf{B} = \frac{\mu_0 k a^3}{3s} \hat{\phi}$ for $s > a$

Same setup as before:

A current flows down a cylindrical tube of radius a oriented along the z-axis. The current density is given by $\mathbf{J} = ks \,\hat{\mathbf{z}}$.

Determine A.

Answer: $\mathbf{A} = -\frac{\mu_0 k s^3}{9} \hat{\mathbf{z}}$ for s < a where I've chosen to put the zero of \mathbf{A} at s = 0. $\mathbf{A} = -\frac{\mu_0 k a^3}{3} \ln(s/a) - \frac{\mu_0 k a^3}{9} \hat{\mathbf{z}}$ for s > a

Boundary Conditions

Derive the magnetic field just inside a circular solenoid (current I, n turns per length) by treating the current as a surface current **K** in the $\hat{\phi}$ direction.

Answer: see Example 5.9, p. 227

Boundary Conditions

Derive the magnetic field just inside a circular solenoid (current I, n turns per length) by treating the current as a surface current **K** in the $\hat{\phi}$ direction.

Answer: see Example 5.9, p. 227

Can you give a one-line argument why this field inside must be uniform?

No, but here's two sentences:

Looking at Fig. 5.37: the vertical part of loop 2 that is inside the cylinder provides the only contribution to $\oint \mathbf{B} \cdot d\mathbf{l}$, so the current enclosed determines \mathbf{B} at the location of this loop segment. But the current enclosed doesn't depend on the location of this segment, so \mathbf{B} must be uniform inside solenoid.

Magnetic Dipoles and Magnetization

A long circular cylinder of radius a has a magnetization $\mathbf{M} = ks \hat{\phi}$. Determine the bound currents and magnetic field inside and outside the cylinder.

Answer: $\mathbf{J}_b = 2k \hat{\mathbf{z}}$ for s < a, and $\mathbf{J}_b = 0$ for s > a. $\mathbf{K}_b = -ka \hat{\mathbf{z}}$ at s = a. $\mathbf{B} = \mu_0 ks \hat{\phi}$ for s < 0 and $\mathbf{B} = 0$ for s > a.