Physics 334

Problem A

A sphere of radius R is made up of a linear dieletric material with dielectric constant ϵ_r . Embedded in the sphere is a uniform free charge density ρ_f . Outside the sphere there is no free charge. Determine the displacement field **D**, the electric field **E**, the bound charge ρ_b , and the charge ρ both inside and outside the sphere.

Problem B

- (a) Check that your solutions for **D** and **E** in Problem A satisfy the appropriate boundary conditions at the surface of the sphere.
- (b) Check that your solutions for **B** and **H** in Problem 6.17 satisfy the appropriate boundary conditions at the surface of the wire.

Problem C

Two parallel conducting plates are separated by a distance d and are held at electric potentials V_1 and V_2 , as shown in the diagram. Assume $V_2 > V_1$. The region between the plates is filled with two equal sized slabs of linear dielectric materials, with permeabilities ϵ_1 and ϵ_2 .

- (a) Assume that the boundary surface between the dielectrics has no free charge on it. Calculate the **D** and **E** fields in the region between the plates. Also calculate the bound charge density ρ_b in both dielectrics, and the surface bound charge σ_b at the interface between them.
- (b) Repeat part (a), but now with a free charge density σ_f on the interface between the dielectrics.

Problem D

Show that the electromagnetic force density Eq. (8.18) can be written as Eq. (8.21) by using the definition of the Maxwell stress tensor, Eq. (8.19).