Physics 334

Review Worksheet for Exam 1

1. Starting from Maxwell's equations, derive the continuity equation for charge conservation: $\frac{\partial \rho}{\partial t}=-\boldsymbol{\nabla} \cdot \mathbf{J}$.
2. A free surface charge density σ_{f} is distributed along the $x-y$ plane. Above the plane is a linear medium with dielectric constant ϵ_{1} and below the plane is a linear medium with dielectric constant ϵ_{2}.

The free charge density is exactly the right amount such that there is no discontinuity in the electric field, that is, $\mathbf{E}=E_{0} \hat{\mathbf{z}}$ everywhere in space. Find σ_{f}.
3. Two concentric cylinders have radii a and b, with $a<b$. The inner cylinder carries a current I in the $\hat{\mathbf{z}}$ direction along the surface of the cylinder. The outer cylinder contains along its surface a charge λ per unit length.

(a) Find the \mathbf{E} and \mathbf{B} fields in each of three regions (i) $s<a$, (ii) $a<s<b$, and (iii) $s>b$.
(b) Find the Poynting vector in each of the three regions.
(c) Find the electromagnetic energy stored in the region $a<s<b$.
4. The Maxwell stress tensor is

$$
T_{i j}=\frac{1}{2} \epsilon 0\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{2 \mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right)
$$

Consider a solenoid with magnetic field $\mathbf{B}=\mu_{0} n I \hat{\mathbf{z}}$ inside. Find all nine elements of the stress tensor for the region inside the solenoid, and express your answer in matrix form.
5. A parallel plate capacitor with separation d has charge densities σ and $-\sigma$ as shown. Inside the plates is a solenoid with radius R, carrying current I through N turns per unit length. The solenoid has length $\ell \gg R$.

(a) Find \mathbf{E} and \mathbf{B} everywhere (specify each region as necessary). Assume that the parallel plates extend to infinity, and the fringing of the \mathbf{B} field at the ends of the solenoid is negligible.
(b) Find the Poynting vector \mathbf{S}.
(c) Calculate the total momentum \mathbf{p} for a length L of the solenoid.
(d) If the current is gradually turned off, what force per length (magnitude and direction) is needed to keep the solenoid in place? Use $\mathbf{F}=d \mathbf{p} / d t$. (Any guesses as to where the opposing force comes from?)
6. Consider an infinite cylinder of radius R, centered along the z-axis as shown. The interior of the cylinder is magnetized with field $\mathbf{M}=M \hat{\mathbf{z}}$, and a uniform free current density $\mathbf{J}_{f}=J_{f} \hat{\mathbf{z}}$ flows.

(a) Use Ampere's equation in matter to find \mathbf{H} in the cylinder.
(b) Find \mathbf{B} in the cylinder.

