Review Worksheet for Exam 2

1. (a) Starting from Maxwell's Equations in a vacuum, with $\rho=0$ and $\mathbf{J}=0$, derive the wave equation for \mathbf{E}.
(b) For the solution $\tilde{\mathbf{E}}=\tilde{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \hat{\mathbf{n}}$ use Maxwell's equations to show that the wave is transverse, that is, $\hat{\mathbf{n}} \cdot \hat{\mathbf{k}}=0$.
2. For the wave

$$
\tilde{\mathbf{f}}=\tilde{A} e^{i(k z-\omega t)} \hat{\mathbf{x}}+\tilde{A} e^{i\left(k z-\omega t+\delta_{y}\right)} \hat{\mathbf{y}}
$$

with a general complex amplitude \tilde{A} and the following values of δ_{y}, find $\mathbf{f}=\operatorname{Re} \tilde{\mathbf{f}}$ and identify whether the wave is linearly polarized, circularly polarized, or neither.

The following trig identities might be helpful: $\cos \left(\theta+90^{\circ}\right)=-\sin (\theta)$ and $\cos \left(\theta+180^{\circ}\right)=$ $-\cos (\theta)$.
(a) $\delta_{y}=90^{\circ}$
(b) $\delta_{y}=180^{\circ}$
3. For a boundary between linear media in the absence of free charge or current, the boundary conditions are
(i) $\epsilon_{1} E_{1}^{\perp}=\epsilon_{2} E_{2}^{\perp}$,
(ii) $B_{1}^{\perp}=B_{2}^{\perp}$,
(iii) $\mathbf{E}_{1}^{\|}=\mathbf{E}_{2}^{\|}$,
(iv) $\frac{1}{\mu_{1}} \mathbf{B}_{1}^{\|}=\frac{1}{\mu_{2}} \mathbf{B}_{2}^{\|}$

Consider an EM wave $\tilde{\mathbf{E}}_{I}=\tilde{E}_{0_{I}} e^{i\left(\mathbf{k}_{I} \cdot \mathbf{r}-\omega t\right)} \hat{\mathbf{x}}$ approaching an interface at normal incidence, as shown below

(a) Apply each of the boundary conditions (i)-(iv) and express the resulting equation in terms of $\tilde{E}_{0_{I}}, \tilde{E}_{0_{R}}$, and $\tilde{E}_{0_{T}}$.
(b) Solve the resulting equations for $\tilde{E}_{0_{R}}$ and $\tilde{E}_{0_{T}}$.
4. Given the potentials

$$
V(\mathbf{r}, t)=0 \quad \mathbf{A}(\mathbf{r}, t)= \begin{cases}k t s \hat{\boldsymbol{\phi}} & s<R \\ k t \frac{R^{2}}{s} \hat{\boldsymbol{\phi}} & s \geq R\end{cases}
$$

(a) Find the \mathbf{E} and \mathbf{B} fields everywhere.
(b) Based on your answer to (b), what physical situation does this describe?
5. For a hydrogen gas the complex wavevector is given by

$$
\tilde{k} \simeq \frac{\omega}{c}\left[1+\frac{N q^{2}}{2 m \epsilon_{0}}\left(\frac{1}{\omega_{0}^{2}-\omega^{2}-i \gamma \omega}\right)\right]
$$

with $\gamma \ll \omega$ and $\gamma \ll \omega_{0}$. Argue why this gives an absorption coefficient $\alpha=2 \kappa$ that as a function of ω is sharply peaked around ω_{0}.
6. Consider a plane wave at oblique incidence to an interface located at $z=0$. The wave has plane polarization perpendicular to the plane of incidence, with the electric field vectors \mathbf{E}_{I}, \mathbf{E}_{R}, and \mathbf{E}_{T} all pointing out of the page. (Medium 1 has ϵ_{1} and μ_{1}, and medium 2 has ϵ_{2} and μ_{2}.)

(a) Write down the equation for $\mathbf{E}_{\|}$at the boundary. Derive two equations by letting x and y vary independently along the interface.
(b) From these two equations, derive Snell's Law for the angle of refraction.

