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The Boltzmann factor: probability of a molecule or a system being
in state ¢ with energy E; while in equilibrium at temperature T is
given by

1 5
p(E) = e Fi/keT

The normalization factor (also called “partition function”) is given
by
7= e BilkT
i

This ensures ) . P(E;) = 1:

3 1 1 z
P(E) = 7€_Ei/kBT — e_Ei/kBT _ = _ 1
- ’ Z VA VA Z 7
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le_Ei/kBT

The Boltzmann factor: p(E;) = 7

So where does this come from?

It's all from entropy! system reservoir

For the system to be in
equilibrium at temperature T,
it must be coupled to a
reservoir at temperature T'.

Note that
Etot = Esys + Eres

and combined multiplicity is

Wtot — Wsys XWres adiabatic, rigid, impermeable wall
~—~—
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Remember Wigt = 1 X Wies.

Now take the ratio of the probabilities of the system being in
microstate ¢ versus microstate j
Sys res
AN ——
p(Ez) _ Wtot( Ez' |Etot - Ez) _ Wres(Etot - Ez)
p(Ej) Wtot(Ej|Etot - Ej) Wres(Etot - Ej)

Use Boltzmann's entropy, S = kgln W, rewrite as W = eS/kB,

and plug in:
p(Ez> eSres(Etot*Ei)/kB
p(EJ) - esres(Etothj)/kB




p(EZ) esres(Etot*Ei)/kB

Recall: o(E;) = SuEwE)ks Taylor expand:

1

) Esys — Sres(Etot) - TEsys

OSres
OE

Sres(Etot - Esys) =~ Sres(Etot) - (

and plug in:

p(E’L) e[Sres(Etot)_Ei/T]/kB e_Ei/kBT
p(E;) — elSes(Bo)=F;/TI/ks ~ o~ Ej/knT

So evidently,
1
p(E;i) = Ee_Ei/kBT



What is it good for? A lot! To begin with, computing averages:

For some quantity A that takes on the value A; in microstate i, we
can compute the average

=Y i) = Y e e
Sometimes the states are continuous and the sum gets replaced b
g p Y

an integral:
1
= /A(q)p(q) dg = Z/A(q) e E@/ksT g

fe_E(q /kBT dq




Equipartition Theorem: quadratic degrees of freedom have average
energy %kBT.

So consider an energy E = cq?. Here ¢ is some coefficient and ¢
might be a velocity component or position. The average is

/Cq2 e—cqg/kBT Clq

/ecq2/kBT dg

Looks awful! But it's not so bad. ..

(E) =



Gaussian integral tricks: starting from

o0
I:/ e_andq:,/E
oo o'

which is derived in your book.

dI d [ &
_ e*Qquq _ _/ q2 e*andq

da do J_ oo

dl d |m 1 T

At th time, o =~ /= = —— T
€ same time, da dal « 20\ o

So all together then

/OO ¢? e dg = iq/z
o 20V «



[e.e] o0
/ e dg = \/Z / ¢* e " dg =
— 00 —oo

Back to Equipartition: with E = c¢?
/Cq2 e*CQQ/kBT dgq

/e—cq2/kBT dg

Example: velocity component (Fmu?) = LkpT

(E) =

where ao = ¢/kpT.

1
(mOA 403 +02) = SksT = /() =

3kpT
m




Stirling's Approximation: N! = (N/e)¥ or InN! = NInN — N.
Very useful! To understand this a bit, compare N! to NNV

NV=Nx N x N ---xN
N'=Nx(N-1)x(N—=2)---x1

Derivation in HW Problem 5.6. Basic idea is to establish the

identity
o
n!:/ z"e T dx
0

and then to realize this integrand is sharply peaked for large n.



Using Stirling’s Approximation
» Ligand-Receptor binding: assume ligands can occupy sites on
a lattice. (2 total sites, and L total ligands. Each site is in one
of two categories: occupied or unoccupied. Leads to binomial
coefficient

Ql oA

W = ; =
Q-L)L! ~ (Q—L)>LLL

» Einstein solid: from PHYS 211. N oscillators, ¢ energy units,
multiplicity
(g+N—-1)! (qg+N)yatN

W - =
g(N —1)! qINN

for large N and gq.



Taking natural log: for Einstein solid

wo lar N=D _ (g+N)™H
qg(N —1)! qINN

S0
S/kg =W = (¢+ N)In(¢g+ N) —glng— NIn N

What do we get when we take

0S/kp 1 1
—1 N N)—— —1 S= .
94 n(g+N)+ (¢ + )q+N nq+qq

Next time: ligand-receptor binding



