
Any homework questions on 7.4, Problem J, or 7.7?



Macromolecule Structure

DNA and to a lesser degree proteins can be modeled as random
walks.

Ways in which they are not random walks:

I proteins form α-helices and β-sheets

I more generally, amino acids interactions — hydrophobic,
polar, or charged — affect the structure (PDB)

I DNA is typically confined to a smaller volume

I DNA is bound into chromosomes

Nevertheless, a random walk model is a very good starting point,
particularly for DNA. Confinement and binding sites can be
incorporated into a random walk model.

Also: provides a framework for thinking about entropic forces.



Freely-Jointed Chain Random Walk

Rigid segments of length
a (Kuhn length), with
random angles at the
connection points.

Fig. 8.2: Illustration of
how a DNA segment
looks like a
two-dimensional
freely-jointed chain.
←



One Dimensional Random Walk

I N steps of length a, each with a probability 1/2 of moving
left or right.

I There are 2N possible sequences (LRRRLR. . . ) and we
assume they are all equally probable.

I The end-to-end distance: R =

N∑
i=1

xi, where xi = ±a

I Then 〈R〉 =
〈 N∑
i=1

xi

〉
=

N∑
i=1

〈xi〉 = 0

I So the average position is zero. Note that the angle brackets
are averages over all sequences.

I To get a sense of the size, need to measure 〈R2〉 . . .



One Dimensional Random Walk, continued

〈R2〉 =
〈( N∑

i=1

xi

)( N∑
j=1

xj

)〉
=

〈 N∑
i=1

N∑
j=1

xixj

〉
This is just multiplication. Check for N = 2:

(x1 + x2)(x1 + x2)︸ ︷︷ ︸
product of sums

= x1x1 + x1x2 + x2x1 + x2x2︸ ︷︷ ︸
sum of products

Now break up the sum:

〈R2〉 =
〈 N∑
i=1

x2i

〉
+

〈 N∑
i 6=j=1

xixj

〉
= Na2 + 0

So we have learned that the end-to-end distance goes like
Rrms =

√
〈R2〉 = a

√
N .



Statistical Treatment of One Dimensional Random Walk

Given N steps, with nr to the right, then N − nr are to the left.
For a given N and nr, the binomial coefficient tells us how many
sequences are possible:

W (nr, N) =
N !

nr!(N − nr)!

Each has a probability 1/2N , so the probability of nr right steps is

p(nr, N) =W (nr, N) =
N !

nr!(N − nr)!
1

2N

Convert this into R: derive an expression for R in terms of N , nr,
and a . . .

should get R = (nr − nl)a = (2nr −N)a

Then we solve for nr and N − nr and plug in above. . .



Statistical Treatment of One Dimensional Random Walk

I A lot of Stirling approximation math ensues, along with
expansions of the logarithm: ln(1 + x) ≈ x− x2/2 + . . .

I You will work through this in Problem 8.1 and get to the
result that

p(R,N) =
2√
2πN

e−R
2/2Na2



Convert to a Probability Density P (R,N)

I p(R,N) is the probability of the end being at exactly some R
value that is a multiple of 2a.

I P (R,N) dR is the probability of the end being between R
and R+ dR

I Assume dR� 2a, and that p(R,N) is essentially constant in
range R to R+ dR:

P (R,N) dR =
dR

2a
× p(R,N) =

1√
2πNa2

e−R
2/2Na2 dR

I Generalize to three dimensions:

P (R, N) d3R =

(
3

2πNa2

)1/2

e−3R
2/2Na2 d3R



Continuous Polymer Chain

Let s be a coordinate measured along the polymer, and r(s)
describe the polymer structure.

r(s)
r(s + ds)

t ∝ ∆r
The tangent vector t can be defined
as

t(s) =
r(s+ ds)− r(s)

ds
=
dr

ds

Persistence Length ξp

I generalization of the Kuhn length a in the freely-jointed chain

I Defined via the tangent correlation: 〈t(s) · t(u)〉 = e−|s−u|/ξp .



Relation between Persistence Length and Chain Length

The end-to-end displacement R given by

R = r(L)− r(0) =

∫ L

0

dr

ds
ds =

∫ L

0
t(s) ds

Since 〈R〉 = 0, look at the square:

〈R2〉 =
〈∫ L

0
t(s) ds ·

∫ L

0
t(u) du

〉
=

∫ L

0
ds︸ ︷︷ ︸

=L

∫ L

0
du e−|s−u|/ξp︸ ︷︷ ︸

=2
∫∞
0 e−x/ξpdx

= 2ξpL

Continuous polymer: Rrms =
√
2ξpL

Freely-jointed chain: Rrms = a
√
N =

√
aL

⇒ a = 2ξp



Radius of Gyration

End-to-end distance can fluctuate wildly. More robust measure of
size:

〈R2
G〉 =

1

N

N∑
i=1

(ri − rCM)2

where rCM = (1/N)
∑

i ri

HW Problem 8.2: show that
√
〈R2

G〉 =
√
Lξp/3.

Hints:

I work with freely jointed chain, and use a = 2ξp at the end

I squaring sums: (
∑

i xi)
2 = (

∑
i xi)(

∑
j xj) =

∑
i

∑
j xixj



Typical sizes

For DNA, ξp ' 50 nm:

Bacteriophage T2 genome has
1.5× 105 bp, so L ∼ 5× 104 nm.√
〈R2

G〉 =
√
Lξp/3

=

√
(5×104)(50)

3 ' 900 nm.



Typical sizes

For DNA, ξp ' 50 nm:

Bacteria genome: Nbp ∼ 4.6× 106,
so L ∼ 1.5× 103 µm.√
〈R2

G〉 =
√
Lξp/3

=

√
(1.5×103)(0.050)

3 ' 5µm.




