
Any homework questions on 7.4, Problem J, 7.7, or 8.1?

I’ll talk about 8.2 next . . .



For RG use the Continuous Polymer Chain
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Chromosomes — Packing of DNA in Eukaryotes



Chromatin

← 30 nm
fiber

← 10 nm
fiber

Base pairs per length: ν ≈


100 bp/nm for 30 nm fiber

8 bp/nm for 10 nm fiber

3 bp/nm for pure DNA

Length of strand L = Na = Nbp/ν



Chromosome Tethering

I Book argues (p. 324) that yeast’s 16 chromosomes each have
a radius of gyration larger than the nucleus, so the
chromosomes must be in an “entangled melt-like
configuration”.

I But this is inconsistent with observed segregation: each
chromosome is confined to its own region.

I Conclusion: chromosomes are likely tethered to the nuclear
wall. How would we test this experimentally?



Measuring Chromosome Tethering

Untethered: P (r) =
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Problem 8.7
Turn these P (r) = P (r, θ, φ) into P (r). Some hints:

I P (r) dr is the probability of finding the tagged spot at a
distance between r and r + dr away:

P (r) dr =

∫ r+dr

r
r2dr︸ ︷︷ ︸

=r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
dφP (r, θ, φ)

I Untethered case pretty straightforward, since there is no θ, φ
dependence.

I Tethered case: this is more work. We are free to choose the
coordinate directions, so let’s take R = Rk̂. Then

(r−R)2 = r2 − 2r ·R+R2 = r2 − 2rR cos θ +R2

Now you’ve got some θ dependence to evaluate in the integral.



Measuring Chromosome Tethering

Untethered: P (r) =

(
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Tethered at R:
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Measuring Chromosome Density

Two points along the DNA that are a known genomic distance
Nbp apart can be marked.

I From contour length:

Na = Nbp/ν

I End-to-end distance

〈R2〉 = Na2 = Nbpa/ν

I a/ν is slope of 〈R2〉 versus Nbp.



Random Walk with a Boundary

Confined random walk
probability density
P (x,N) no longer a
gaussian.

Problem 8.5: show P (x,N) satisfies diffusion equation:

∂P (x,N)

∂N
=
a2

2

∂2P

∂x2

Hint:

P (x,N + 1) =
1

2
[P (x+ a,N) + P (x− a,N)]

Taylor expand l.h.s. about N , r.h.s. about x.



Diffusion Equation

I Use G(x,N) = (const.)P (x,N) to avoid worrying about
normalization until the end.

I Boundary conditions G(0, N) = 0 and G(L,N) = 0.

I Fourier series: G(x,N) =

∞∑
n=1

An(N) sin

(
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L
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)
I “Initial” conditions (N = 0) give us An(0). For example, take
G(x, 0) = δ(x− x0), gives
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L
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I Now plug G(x,N) expansion into the differential equation:



Fourier Expansion in Diffusion Equation

On the left hand side:
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On the right hand side:
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Orthogonality says each individual Fourier mode must satisfy
diffusion equation:
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Solution to Diffusion Equation

dAn(N)

dN
= −a
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This is just df/dN = −αf which has solution f = f(0)e−αN , so
our coefficients are

An(N) = An(0) exp

[
−
(
nπ

L

)2a2

2
N

]
Plug back into expansion
for G(x,N), normalize
to get P (x,N) and
you’re done!



DNA Looping and Return Probabilities


