
PHYS 337 Biophysics Spring 2014

Reading Assignments for Week 4

• Monday, February 3: Sections 5.4 (pp. 214–219) and 5.7 (pp. 232–233)

• Wednesday, February 5: Section 5.5 (pp. 219–220) up to the paragraph beginning “As a
concrete example. . . ”, then Sections 5.5.1 through Section 5.6 (pp. 222–232).

• Friday, February 7: No new reading. Catchup and review.

Homework #3 — due Friday, February 7

1. Problem B: Chemical Equilibrium. For the reaction A
k1
�
k2

B
k3→ C we have the rate

equations
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dt
= −k1a+ k2b
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dt
= k1a− k2b− k3b

dc

dt
= k3b

where, e.g., a = [A] is the concentration of A molecules.

(a) Show that the total concentration a + b + c is conserved, and that the equilibrium
concentration of A molecules is aeq = (k2/k1)beq.

(b) Write a program using Python or Mathematica or a spreadsheet to solve these equations
and graph the solution as a function of time. Use Euler’s method, with

a(t+ ∆t) ' a(t) + ∆t× da

dt

∣∣∣∣
t

= a(t) + ∆t
(
−k1a(t) + k2b(t)

)
and similar for b(t + ∆t) and c(t + ∆t). Take k1 = k2 = 1 and ∆t = 0.01, and initial
conditions a0 = 1, b0 = c0 = 0.

Vary the value of k3 to find (i) a case where a(t) reaches equilibrium and (ii) another
case where a(t) does not reach equilibrium, similar to Fig. 5.6. Show the graphs and
report the corresponding values of k3.

2. Problem C: Mechanical Equilibrium. This is a problem illustrating the role of time
scales in determining when we can assume mechanical equilibrium. Take a bead in an optical
trap with spring constant ksp subject to a time-dependent applied force Fapp(t) = F0e

−t/τ ,
which describes gradually releasing the applied force.

(a) Using the equilibrium assumption, find xeq(t).

(b) Now let’s solve for the actual motion. The bead is in a viscous medium, so there is a
friction force Ffr = −bv. Newton’s 2nd law gives us

m
d2x

dt2
= −bdx

dt
− kspx+ Fapp(t)

Let’s assume the viscosity is high enough that the acceleration term is negligible, so the
left hand side is zero. Solve this equation to find the resulting motion x(t). Take as
initial condition that the particle is in equilibrium with the applied force. Hint →



Hint: to solve the equation either (i) use the method of integration factors or (ii) guess
the form x(t) = Ae−t/τ + Be−(ksp/b)t and determine A and B. If you’re shaky on these
methods, please come see me!

(c) Comparing time scales: show that in the limit of τ much greater than b/ksp (i.e. slowly
varying applied force) your solution for x(t) reduces to the equilibrium assumption xeq(t).

3. Problem D: Stretched Beam. Consider a beam of length L, such as shown in Fig. 5.23,
that has been slowly stretched by an amount ∆L. Let’s find the local amount of streching
u(x) where x ranges from 0 to L, under the assumption that the strain energy given by
Eq. (5.28) is minimized. Solve the appropriate Euler-Lagrange equation for u(x).

4. Problem E: Bent Beam.Consider a beam of length L, such as shown in Fig. 5.18a but
inverted, that is fixed at one end and bent upward by an distance y at the other end. The
equilibrium vertical displacement u(x) is given by the minimum of the bending energy

Ebend =
1

2
C

∫ L

0

(
d2u

dx2

)2

dx

where C is some material constant.

(a) This functional has second derivatives! Extend the treatment of Section 5.7 to the case
where the integrand f(u, u′, u′′) can depend on second derivatives, and show that the
resulting Euler-Lagrange equation is
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+
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Hint: along the way you should have an η′′ term and you will need to use integration by
parts twice on it. Assume that η′(0) = η′(L) = 0.

(b) Solve this equation to get the minimum energy shape of the bent beam. You will need
the following boundary conditions: u(0) = 0 and u(L) = y for the heights at each end.
Additionally: u′(0) = 0 (tangent is horizontal at fixed end) and u′′(L) = 0 (free end isn’t
bent).

Note: This is a simple case of what is known as Euler-Bernoulli beam theory.

5. Problem 5.3b. Assume a carbon atom for the mass.

6. Problem F: Ideal gas law from entropy. An ideal gas molecule has a number of mi-
crostates proportional to the volume V of its container. Use this idea and the thermodynamic
relation p/T = (∂S/∂V )E,N to derive the ideal gas law.

7. Problem 5.8


