
Directory trees plus Compiling and Running C++ Programs Lab 2

Primary Objectives

1. Learn about directory trees and how to use them to your advantage.

2. Learn a few more UNIX commands:mkdir, more, cat, rm, cd and
pwd.

3. Get some practice using the commands you discovered last week.

4. Gain experience editing a C++ program.

5. Compile and execute a C++ program.

6. Run a samba program.

7. Ask questions.

CSCI 203 Page 1 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

Before Getting Started

Before getting started you should setup an edit window for constructing a
labhandin.txt file. The idea is that as you go through the lab, whenever it
is indicated that something must be handed in, you can just copy and paste
it from your terminal window into thehandin.txt edit window. At the end
of the lab you save thehandin.txt file, print it, and then hand it in. If you
aren’t quite finished at the end of lab then you can save the file anyway and
then when you return to finish the lab open an editor window and load the
partly finishedhandin.txt file.

Everyhandin.txt file muststart with a header containing your name,
lecture section, lab section, date, etc. At this point open an edit window
in emacs by pulling down theFiles menu and choosingOpen File....
This should bring up a directory path in the minibuffer to which you can
append the file namebanner, the file you are going to create. Create a
banner by entering the following form:

//##

CSCI 203 Page 2 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

// Name: Happy Student
// Course : CSCI 203 / Prof. LectureProf / MWF ?:00
// Lab Section: Monday 6-8AM Section Number: nn
// Assignment: Lab #?, or Project #?
// Date: mm/dd/yy
//
//##

Make the appropriate changes, and save this file. Having done this, you
should not have to repeat the construction.

Now to begin ahandin.txt file for Lab 2, open a new edit window
for a file namedhandin.txt. Insert the banner file by invoking theFiles
menu and selectingInsert File. . . . Enter the name of the banner file, i.e.,
banner. You should repeat this process at the beginning of every laboratory
session. Now save this file as it currently is. Retain this edit window in the
corner of your workspace so that when instructed you can copy data into it,
thus gradually building up the file which you print and hand in.

Now, on to the lab exercises. . .

CSCI 203 Page 3 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

A Few Words About Directory Trees

As you progress through the semester you will be creating a lot of files. As
a means of keeping your account organized, UNIX provides the ability to
create a special file known as a “directory” — on a PC or Mac you may
know these as “folders”.

In computer file systems, directories are organized in a hierarchal fash-
ion. Your account is, itself, a directory which is most often referred to as
your homedirectory. In the directory hierarchy of Bucknell’s file system
there is a directory named “student” which contains 26 more directories
named “a” through “z”. Each directory named for a letter of the alphabet
contains all the home directories of students whose account names begin
with the respective letter. For instance, the student John Smith might have
his directory in “s”, if his account name is “smith”; if, on the other hand,
his account name is “jsmith”, then his home directory would be in the
directory “j”.

Each directory in the file system can contain several other directories.
We refer to a directory within a directory as a “sub-directory” of the higher

CSCI 203 Page 4 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

level directory and the higher level directory as the “parent” of the sub-
directory. For example, if your home directory were named “jsmith” it
would be a sub-directory of the directory named “j”, and j would be the
parent directory of your home directory.

Recall that a directory is just a special type of file. It should not sur-
prise you that a directory can contain text and other types of files as well
as numerous directories. In this lab, you will create and use directories and
sub-directories to help you keep your account organized; while this may not
seem like a major issue at the moment, by the 4th or 5th lab you will have
come to appreciate this simple yet powerful concept.

Naming Directories

Open a terminal window and at the UNIX prompt issue the “ls” command.
You will probably only see the files you worked with last week.

Enter the following two commands at the terminal window’s prompt.

mkdir cs203

CSCI 203 Page 5 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

and then

mkdir CS203

List your home directory again and you should see the following:

CS203/ cs203/

These entries illustrate two points. First, the “/”, forward slash, character
at the end of a file name indicates that the file is a directory.Note: this
character “/” is not part of the file name! It is added to emphasize that the
file is actually a directory. Second, UNIX distinguishes between upper and
lower case letters; which can be annoying if you think you typed something
correctly, but you substituted a lower case letter for an upper case one or
visa-versa. One popular convention for naming files is to capitalize the first
character of directory names and use a lower case letter for the first character
of all other kinds of files. This makes it easy to distinguish the directories
from files of other types.

Since you only need one directory for your course work, delete one of
the directories by issuing the following command.

CSCI 203 Page 6 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

rmdir cs203

In future labs we will always refer to yourCS203 directory as the place
where your work for the course is kept.

UNIX Commands

Knowing how to use directories and sub-directories and being able to ma-
nipulate the files in them will prove to be useful throughout this course. In
this section of the lab you get a lot of practice with UNIX and hopefully a
clear understanding of the file system. Now, read through all of sections 4.3
and 4.4 of The Guide and do the examples as indicated. Be very careful to
watch for error messages which may occur — these are an indication that
things didn’t go as intended. Also, make frequent use of the commandsls,
to determine directory content, andpwd, to determine your current working
directory. In fact, do these two instructions now to see what they tell you.

Do sections 4.3 and 4.4 in The Guide.

CSCI 203 Page 7 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

When you have completed all the examples be sure you are in your home
directory (usepwd command). If you aren’t there issue thecd command
with no directory argument. Now that you are in your home directory issue
the following command:

ls -R

Cool, huh? The-R option instructs UNIX to recursivelydescend through
the directories and perform the specified action,ls in this case, in each
subdirectory.

Open yourhandin.txt file and, using theCopy andPastekeys you
learned about last week, (these keys are on the left side of the keyboard),
copy the data generated by the above command “ls -R”, into your emacs
window. What you need to copy begins with:

host-name#% ls -R

And ends with:

host-name#%

CSCI 203 Page 8 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

Having copied the data to thehandin.txt window you should put a
header on the copied data. Skip a couple of blank lines after the banner and
then add 5 lines as follows (before your data)

//###
//
// Exercise 1
//
//###

If you are unsure that things have gone as they should, have your professor
or TA verify that you have done this correctly.

The time will come when you want to delete a directory for one reason
or another. In section 4.3 of The Guide, you learned how to remove, delete,
files with rm. Using this same command you can also remove directories,
including all the sub-directories and files they may contain; can you guess
why rm should be used with caution? Try the following:

rm progs

CSCI 203 Page 9 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

The message you see informs you thatprogs is a directory and just using
rm will not delete a directory. Therm command used in conjunction with
the option ‘-r’ instructs the system to delete all the files in a directory
(including any subdirectories) and the directory itself. Issue the following
command:

rm -r progs

The system asks you if you want to look into the directoryprogs, respond
with “y”. Next the system asks you if you want to delete the file named
jack_theory, reply with “n”, then respond with “y” when asked if you
want to removeprogs. Because you instructed the system not to remove the
file jack_theory, the directory is not empty and the system will not delete
it even though you instructed it to. This helps to guard against deleting files
and directories accidentally. Go ahead and issue the

rm -r progs

command again only this time answer with a “y” to all prompts. Now re-
move thelabs directory and all its contents (this only requires one com-

CSCI 203 Page 10 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

mand). Next remove the file “myhumpty” from your home directory.
Using your newly gained knowledge:

1. Be sure that you are in yourCS203 directory (use thepwd command).
Create two sub-directories of yourCS203 directory with the names
Projects andLabs.

2. Enter theLabs directory and create two sub-directories namedLab1
andLab2.

3. Move the files you worked with last week into yourCS203/Labs/
Lab1 directory.

If you are unsure, have your professor or TA check what you have done.

Your First C ++ Program

Today you get your first “real” experience with a C++ program. Turn to
page 60 inMercer (your textbook), and read and do Programming Project

CSCI 203 Page 11 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

2A. To create a new file, openemacs and in theFiles menu, selectOpen
File. . .. Correct the directory path given in the minibuffer if necessary to
indicate toyour Lab2 directory. Appendhello.cc to the directory path in
the minibuffer, making sure that a slash (/) separates the file name from the
preceding directory names. Enter the program as it appears in the textbook
and save it. Make sure, your terminal window is in the correct directory.
Now compile this file by typing at the Unix prompt:

g++ hello.cc -o hello.exe

and press return. This instructs the system to compile the C++ program in
the filehello.cc and create an executable namedhello.exe — in other
words, the compiler translates the program description inhello.cc into a
machine language program which it puts in the filehello.exe. It is not im-
portant that you understand thisg++ command completely just yet — you
will get a lot of experience with it this semester. If you have entered every-
thing correctly, there will be no error messages printed from the compiler.
If you have error messages, compare what you typed to what is in the text,
make any corrections, save the file, and recompile it. Once the program

CSCI 203 Page 12 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

compiles without errors, continue.
Type the following at the system prompt:

hello.exe

If all has been entered correctly, you should see the words

Hello world!

appear on the screen. If not, raise your hand and have your professor or TA
assist you.

Now complete the following activities usinghello.cc as a base. (Re-
call that we usedendl in the output statement (cout) to cause the screen
output to go to a new line. You will need to use this to cause the output to
have the appropriate blank lines.)

1. Modify the program so that, in addition to “Hello World!”, the pro-
gram also displays your name, with a blank before and after — your
name should come after “Hello World!”

CSCI 203 Page 13 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

2. Compile and run the program and verify that your name appears as
described.

Open thehandin.txt edit window and create a new header (actually,
just copy and paste the “exercise 1” header and change the name). Label
this new header “hello.cc”. Copy this enhanced “Hello World” program
code to yourhandin.txt file along with the output from a test run of the
program. (Use the insert file option from theFilesmenu to put the program
code in and then do copy and paste to transfer the result of the execution.

Experience with Coding Errors

To give you more practice with the error messages that a compiler might
give you, we have modified Lab Project1C from the Mercer text. Before
you begin, issue the command

pwd

CSCI 203 Page 14 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

to see what your current directory is. The response to the command should
be something like the following.

.../loginname/CS203/Labs/Lab2

If you don’t see this then get your instructor’s or TA’s attention and ask for
help.

Now to begin: you will need another file,errors.cc. Copy this file
from ~cs203/Labs/Lab2 into your ownLab2 directory.

Below is a series of steps to be performed along with some ques-
tions that you will need to answer. To answer the questions, create a file
namedexercise-2, usingemacs. Type the answers as you go into the
handin.txt edit window — you should make a new header and label it
“errors.cc”.

1. Compile and runerrors.cc. Give a brief explanation of what the
program does. In particular, what does the third line in the output
indicate?

2. Modify the program according to the instructions below. For each

CSCI 203 Page 15 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

modification, compile the program and examine the error that you
get. Provide a brief explanation of 1) what is wrong with the program,
and 2) how the compiler reports the error. You may cut and paste error
messages from the Terminal window if you wish to include them in
your explanation.

Note: Since this file is short, it will be easy to make changes based
on line number by just counting the lines. With larger files, this is
more difficult. To move to a specific line in a file, typeC-c g. After
entering that command, type in the line number in the minibuffer. The
cursor will then jump to that line.

Note: you should undo each change before moving on to the next
part.

• Comment line 4 by adding// in front of {.

• Remove the opening angle “<” from the line

#include <iostream>

• Comment line 7.

CSCI 203 Page 16 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

• Remove closing double quotes from line 9.

• Replace<< with >> in line 9.

• Replace the() after the wordmain with a; in line 3.

As a precaution you should save yourhandin.txt file at this time.
Don’t close the window because there is more to come, but it is a good habit
to save your edit sessions frequently.

A Face — Using Samba

In the course we will be using a graphics-based tool called Samba.

Type in the following C++ Program

// A happy face drawing program
#include "/home/hydra/COURSES/cs203/include/Face.h"

CSCI 203 Page 17 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

int main ()
{

// create a Face object called
// myFace

Face myFace;
myFace.Display(); // a call to a member function
pause();
return 0;

}

Save the program asface.cc. The#include allows you to use some
C++ code that we wrote. The include file defines the classFace.

Compile the Program

Compiling the program actually involves two activities. First, the program
in face.cc is translated into machine code. But before it will work, the
translated version must be linked together with other translated code for the

CSCI 203 Page 18 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

Face class. Both activities are specified in the same command. To compile,
enter the following command line.

g++ face.cc -L/home/hydra/COURSES/cs203/lib -lSamba -o face.exe

The-L phrase specifies where the compiler should look for the other trans-
lated code, and the-l specifies the name of the file (called a library) which
contains the code.

To save retyping that long line, you can retrieve the line at a Unix prompt
by pressing the up-arrow key. Now you can edit the line using the left and
right-arrow keys. If this does NOT work, ask your TA or instructor for help.

Run the Samba Program

To run this program you must type the following at a UNIX prompt.

face.exe | samba

The vertical bar is called apipe. What this pipe does is to direct the output
of yourface.exe program to the input stream of thesamba program. The

CSCI 203 Page 19 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

samba program will produce the nice graphical output. You should see a
new window withSamba at the top. Move this window down and you
should see a little window that saysPolka Control Panel. PressStart on
thePolka Control Panel. You should see a pretty face.

1. Show the face to your Instructor or TA.

2. PressQuit on Polka’s window to quit.

Before leaving this program try the following. Execute theface.exe
program on its own, without piping the output tosamba. In other words, just
enter the following command at the UNIX prompt and see what is displayed.

face.exe

What you will see is several lines of strange looking output which is exactly
what was piped intosamba. The lines you see are actually instructions
which thesamba program inputs and carries out.

CSCI 203 Page 20 September 9–10, 2002

Directory trees plus Compiling and Running C++ Programs Lab 2

What To Hand In

Save yourhandin.txt file at this point. You might want to look it over to
make sure that what is there is in a nice format and that nothing is missing.

Print this file using the newa2ps command you learned last week.

a2ps handin.txt

CSCI 203 Page 21 September 9–10, 2002

