
Scope, Parameter Passing, and Logical Expressions Lab 5

1 Purpose

1. Explore scope of identifiers in C++.

2. Practice “global”, “local” and “shadowing” concepts.

3. Practice writing own C++ user defined functions.

4. Practice with parameter passing in C++ user defined functions.

5. Explore logical expressions andbool objects.

2 Exercise 1: Understanding Scope

A declarationin a program is a way to associate certain attributes (for example a
type) with an identifier. The declarations

int x, y;
char ch;

associate the type-attributeint with the identifiersx andy and the type-attribute
char with the identifierch.

When the compiler is processing the code of a program it has to keep track
of all the identifiers it has seen and the attributes associated with each identifier.
The scope of a declarationis the region of a program’s code where the compiler
remembers the attributes from the declaration. Remember identifiers in C++ name
more than objects or variables. Identifiers also name constants, functions, classes
and other entities.

C++’s scoping rulestates that the scope of a declaration extends from the dec-
laration itself to the end of the block where the declaration appears; that usually
means from the point of the declaration up to the next right curly brace which isn’t
matched with a left curly brace. A basic rule of declarations is that you cannot
declare an identifier twice in the same block. It is also possible in C++ to have one
blocknestedinside another block and then the “basic rule of declarations” does not
apply — you can redeclare an identifier inside a nested block.

Copy the filescope.cc from ~cs203/Labs/Lab5 to your Lab5 directory.
Study the program carefully and try to determine what will be printed when run
beforeyou compile and run the program.

After you have analyzed the program and written down your answers, compile
and run it. Try to understand why the program gives the results it does. If you need
an explanation, please ask your lab TA or instructor. Don’t continue with the lab
until you are confident you understand scope.

CSCI 203 Page 1 October 7–8, 2002

Scope, Parameter Passing, and Logical Expressions Lab 5

Copy and paste the contents ofscope.cc file and its output to your hand-in
file. On the hand-in file copy, circle the declarations of the objects and constants
and using a bracket show the scope of each.

Place in your hand-in file responses to questions that follow. (Specify which
“k” object you are talking about by using the line number.Emacs displays the cur-
rent line number (the line with the small black rectangle) at the bottom as “Lline-
number”, for example,L40.)

1. Describe “global”. What objects and associated line number areglobal?

2. What constants and associated line number areglobal?

3. Describe “local”. What objects and associated line number arelocal?

4. What constants and associated line number arelocal?

5. Describe “parameter”. What objects and associated line number areparam-
eters?

6. Describe “argument”. What objects and associated line number areargu-
ments?

7. Describe “shadowing”. What object(s) and associated line number shadow
others?

3 Exercise 2: Parameter Passing

C++ allows calls to functions to pass argumentsthreeways — 1)pass by value, 2)
pass by referenceand 3)pass by constant reference. You need to understand and
to be able to use all three.

Write a C++ program with avoid function with oneint parameterx. The
function should output the function name and the value ofx, similarly to the output
used inscope.cc. Then one is added tox. Finally before returning, the function
outputs again the function name and the value ofx.

The main program declares anint objecty, assigns it 7 and passesy as an
argument to your function. After the call, the program outputs the value ofy.

Type in your program and get it to compile. In your hand-in file, provide a
listing of your program and a run.

CSCI 203 Page 2 October 7–8, 2002

Scope, Parameter Passing, and Logical Expressions Lab 5

3.1 Pass by Value

If you use only(int x) in your function header, thevalueof y is copiedto the
newly created parameter objectx on the call. This is calledpass by value. When
the program hits thereturn statement, all the local objects and constants including
all the parameters in the function are destroyed. Notice that the state ofy, the
argument, is unchanged.

The lifetime of an object or constant begins when the object or constant is
created until it is destroyed. Forlocal objects and constants in a function, they are
created when the function is called and destroyed when the function returns. In the
scope.cc program, the functionfunny() is called twice, therefore, the parameter
k and local objectj are each created and destroyed twice.

3.2 Pass by Reference

Now alter your function header and place an& between theint andx. Compile
and run again. In your hand-in file describe what is printed? What is different?

If you use& as in (int & x) in your function header, theaddressof y is
passed tox on the call. Any use ofx in the function uses the address of thesame
cell in memory asy. Any change to the state ofx is a change of state ofy. This is
calledpass by addressor pass by reference. Notice that the state of the argument
object, in this casey, may change.

3.3 Pass byconst Reference

Now alter your function header and place aconst before theint. Compile and
run again. In your hand-in file describe what is printed? What is different?

If you useconst as in(const int & x) in your function header, theaddress
of y is passed tox on the call as before withpass by referencebut the function
promisesnot to change the state ofx. The compiler enforces this promise and gives
you an error message because your program violates it.

Alter your program by removing thex = x + 1; line and compile and run.
Does it compile now?

4 Exercise 3: Parameter Passing

Copy the fileex3.cc from the~cs203/Labs/Lab5 directory into yourLab5 di-
rectory. Read and study the code carefully. Compile and run it feeding Samba —
as usual.

CSCI 203 Page 3 October 7–8, 2002

Scope, Parameter Passing, and Logical Expressions Lab 5

Rememberthat to compile a Samba program you type the following onone
line:

g++ ex3.cc -L/home/hydra/COURSES/cs203/lib
-lSamba -o ex3.exe

To run it, type the following in yourTerminal window.

ex3.exe | samba

In this exercise, you will need to reread the discussions in Exercise 2. This
exercise asks you to apply what you have just learned to a new situation. Try to
visualize what is happening to the Circle object(s). Run samba in slow mode to
observe what is happening. Ask yourself: “Are there two Circle objects or one?
What is thelifetime of the object(s)?”

In your handin.txt file, answer the following questions under a banner la-
beled “Exercise 3”:

1. Describe in a sentence what happens to the Circles on the screen.

2. What does thedelay() function do?

3. Is the objectx a “call by value” or “call by reference” parameter? Why?

4. Why does the orange circle disappear before the blue one?

5. Insert an& betweenCircle andx and recompile and run the program again.
Describe in a sentence what happens on the screen.

6. Why is there only one circle now?

5 Exercise 4: C++ Logical Expressions andbool Objects

Two objects of certain classes, e.g.,int, double andstring, can be compared by
using a comparison operator. The comparison operators in C++ are the following:

== equal — Notetwoequal signs, not one!
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

CSCI 203 Page 4 October 7–8, 2002

Scope, Parameter Passing, and Logical Expressions Lab 5

An expression such as(x - 3) < (y * 5) is a logical expression, i.e., it
has truth value (evaluates totrue or false). Logical expressions are also referred
to asBooleanexpressions, after the turn-of the eighteenth century mathematician
George Boole.

Compound logical expressions can be created using logical expressions along
with the&&, || and! operators, standing forand, or andnot, respectively.

&& “and” operator, true if both logical expressions are true.
|| “or” operator, true if either logical expression or both is true
! “not” operator, true if the logical expression is false, false if the

logical expression is true.

Note that both&& and|| havetwo symbols. (The single characters& and| mean
something different!)

Type in the following C++ program. You’ll notice that there is a new type used
in the program.bool is the name of the type which has just two values —true
andfalse.

#include <iostream>
int main(){

bool answer;
int x, y;

x = 2;
y = 3;

answer = x < 5; // replace "x < 5" expression here

cout << answer << endl;

return 0;
}

Study this program, compile it, and run it.
Try the following expressions, one by one, by replacing thex < 5 in the above

program with each. In yourhandin.txt file present the answer to each of the
seven logical expressions and explain the result. Clearly label the part of the ques-
tion you are answering. It’s a good idea to try to guess the answer before the
program tells you.

1. true

CSCI 203 Page 5 October 7–8, 2002

Scope, Parameter Passing, and Logical Expressions Lab 5

2. false

3. x = 7

4. x == 7

5. (x > 1) && (y < 2)

6. (x > 1) || (y < 2)

7. !(x == 3)

6 Hand In

Hand in the answers from the four exercises which should be in yourhandin.txt
file. Make sure you have the proper banner across at the beginning of the file and
appropriate banners separating each of the exercises.

CSCI 203 Page 6 October 7–8, 2002

