
Selection, Repetition, and Class Implementation Lab 6

1 Purpose

• To gain experience using 1-way selection.

• To gain experience using the C++ while construct.

• To gain experience implementing a class given a class definition.

• To gain experience using aMakefile.

2 One Way Selection

Copy the filesalary.cc from the~cs203/Labs/Lab6 to your ownLab6
directory.

Using thesalary.cc file, complete problem 7B on page 262 of the
Mercer text.

Be sure to hand-check your results so that you know you have done the
implementation correctly.

Hand in the program code, and an execution of the program.

CSCI 203 Page 1 October 14–15, 2002



Selection, Repetition, and Class Implementation Lab 6

3 Repetition

Copy the filerep.cc from the~cs203/Labs/Lab6 to your ownLab6 di-
rectory. The program is supposed to read a sequence of positive values and
then display their average.

You are to fill in the main function so that it reads (using the function
getValue()) a sequence of values and sums them up — the end of the
sequence will be marked by the value -1. After all the values have been
read, you display the average of the values.

Important : If no values are read (i. e., if the first value read is -1) then
a message indicating no data was read should be printed.

Hand in the complete program code, and several executions of the pro-
gram showing that all the features work.

4 Implementing a Class

Scenario:

CSCI 203 Page 2 October 14–15, 2002



Selection, Repetition, and Class Implementation Lab 6

A gate attendant at a concert makes use of a “click-counter”
which, when clicked, adds one to the current value of the
counter. In this way, when everyone has entered the concert,
the number of people admitted can be determined.

The click-counter has two buttons: the counter button, which
when pressed increments the counter, and the reset button
which sets the counter value to zero. The click-counter also has
a window containing a sequence (probably 4) rotating wheels
with the digits from 0 through 9. These rotate appropriately to
represent the number counted so far. The important thing about
the window is that it sets a maximum on the number of things
which can be counted — it will automatically roll back to 0
when the maximum number is incremented.

We want to develop a similar kind of counting device which can be
used in a program to, for example, count the number of times an object is
accessed or the number of times a loop repeats.

Here is a class definition for a software click-counter.

CSCI 203 Page 3 October 14–15, 2002



Selection, Repetition, and Class Implementation Lab 6

#ifndef CLICKER_H
#define CLICKER_H

class Clicker {
public:

Clicker();
Clicker(int inMaxCount);
void click();
void reset();
void setMaxCount(int inMaxCount);
void display() const;
int getCount() const;
int getMaxCount() const;

private:
int mCount;
int mMaxCount;

};

CSCI 203 Page 4 October 14–15, 2002



Selection, Repetition, and Class Implementation Lab 6

#endif

Carry out the following activities.

• Copy the filesClicker.h, testClicker.cc andMakefile from
~cs203/Labs/Lab6 to yourLab6 directory.

• Edit Clicker.h and add appropriate pre and postconditions for each
method.

• Create a new fileClicker.cc and write the implementations for each
of the methods (and constructors) of the class definition.

For the default constructor you can choose a value which will always
be used for the maximum (unless it is fixed in some other way).

For thedisplay() method, print the current value of the counter and
the maximum count.

• Notice that theconst after the three methods is a promise that the
function doesn’t change the state of the object.

CSCI 203 Page 5 October 14–15, 2002



Selection, Repetition, and Class Implementation Lab 6

• Notice in the fileClicker.h that the first two and last lines are com-
piler directives (since they begin with#) and they make sure that if
you happen to includeClicker.h twice by mistake, the second in-
clusion will have no effect. Without these lines you would end up
with lots of “doubly defined” object and abstraction names.

The notion#ifndef CLICKER_H is read “if CLICKER_H is not de-
fined then continue, otherwise skip to the#endif. Notice that if
CLICKER_H is defined, then the lines after the#ifndef will not be
seen by the compiler. The#define CLICKER_H line obviously de-
fines the nameCLICKER_H and then goes on. That will only be done
the first time the file is included!

• ExaminetestClicker.cc to see how it works. It has no other pur-
pose than to act as a testing ground for theClicker class.

Move to yourLab6 directory. Now, compile your program by typing
make after the Unix prompt. The commandmake performs the in-
structions in theMakefile you copied. We will learn how to create
our ownMakefile files later.

CSCI 203 Page 6 October 14–15, 2002



Selection, Repetition, and Class Implementation Lab 6

After compiling, run the executable to test the class definition. Mod-
ify the program to test the following feature of the class. You should
show that the clicker object actually rolls back to 0 properly when
the maximum value is reached. (How do you suppose you should
initialize the maximum count to test this? 10000? 100? Something
else?)

Turn in all the code for this part:Clicker.h, Clicker.cc, and
your final version of testClicker.cc along with the execution of
testClicker.cc.

When you are finished, be sure to clean up your directory. Typemake
clean at the Unix prompt. This will remove all of your.o files and your
.exe file. You should clean up your files after each lab.

CSCI 203 Page 7 October 14–15, 2002


