
Numerical Problems Lab 9

1 Purpose

This lab illustrates the use of looping structures by introducing a class of
programming problems called numerical algorithms.

1. Practice the use of the C++ repetition constructs offor, while, and
do-while.

2. Use computer-generated random numbers.

3. Explore the solution to several numerical problems.

2 Introduction

In this lab, you will write a program to estimate the value ofπ and a second
program to the find the roots of an equation.

Create aLab9 directory and do your work there.

CSCI 203 Page 1 November 18–19, 2002

Numerical Problems Lab 9

3 Monte Carlo Simulation

Your task in this part of the lab is to write a program that uses a monte carlo
simulation (named after the famous casinos of Monte Carlo) to estimate
the value ofπ. To do so you will use a probabilistic method that relies on
random numbers.

This is how it works. Suppose that we have a square with sides of length
1.0, and the upper right quarter of a circle inside the square with a radius of
1. The area of a circle isπr2. Since we have only a quarter of a circle and
r = 1, the area inside the quarter circle isπ/4.

CSCI 203 Page 2 November 18–19, 2002

Numerical Problems Lab 9

(0,0)

(0,1)

(1,0)
�

�
�

�
�

�
�

���

Unit Circle

The idea is to throw random darts at the square and then to count the
darts that fall inside the circle, and the total number of darts. Given that the
darts are produced in a truly random fashion, i.e., with uniform distribution,
the probability of a dart falling in the circle is the ratio of the number of

CSCI 203 Page 3 November 18–19, 2002

Numerical Problems Lab 9

darts in the circle to the total number of darts:

probability in circle=
in circle

total #

This probability, however, is also equal to the ratio of the area of the circle
to the area of the square. Since the square has an area of 1, this ratio isπ/4.
So solving forπ we get the following:

probability in circle=
π

4
π = 4×probability in circle

That is,

π = 4× # in circle
total #

So this is how we estimateπ using random numbers.
Now how do we do this in a program? In the~cs203/Labs/Lab9 di-

rectory you will find a file calledgetRandom.h. Include this file into your

CSCI 203 Page 4 November 18–19, 2002

Numerical Problems Lab 9

program. Look at the filegetRandom.h and read the comments. To gener-
ate a random number simply call the functioninitRandom() onceto ini-
tialize the random numbers and then call the functiongetRandom() each
time you need a random number. For example,

x = getRandom();

This function will return a random double in[0.0,1.0) where the “[” means
it includes 0.0 and the “)” means it does not include 1.0. Each point where a
dart hits will require two random numbers: one for thex value of the point,
and one for they value of the point. We are generating points in the first
quadrant of the circle only becausex andy are always between 0.0 and 1.0.

To compute your estimate ofπ, you will need to count up the number
of darts and the number of darts that fall within the circle. Points within the
circle will have a distance from the origin that is less than 1; that is,√

x2 +y2 < 1.0

How many darts to generate? Start by throwing 100 darts.

CSCI 203 Page 5 November 18–19, 2002

Numerical Problems Lab 9

After you write your program, you should carry out three experimental
test runs on your program with 100, 1000 and 10,000 darts. This will give
you some idea of how much the estimates can vary. Put the results of three
runs and a listing of your working program in yourhandin.txt file.

4 Finding the Roots of a Function

Many mathematical problems can be solved exactly by applying a procedure
or algorithm. For example, there is an explicit formula for computing the
roots of a quadratic equation. Likewise, a formula exists for computing the
roots of cubic polynomials (those with degree 3). But for many problems
(e.g., polynomials of degree 5 and higher), no such explicit formula exists,
and methods to compute an approximate value must be used.

Iterative methodsare approximation methods which often lend them-
selves to implementation on computers. In an iterative method one begins
with a guess of the solution, then using that guess, computes a better ap-
proximation of the solution. If the method is well-designed and the guess is

CSCI 203 Page 6 November 18–19, 2002

Numerical Problems Lab 9

reasonable, the new approximation is closer to the solution than the origi-
nal guess. The method of computing a better approximation can be applied
to our new approximation in turn, producing an even better approximation.
This approach can be repeated (iterated) until the approximation is suffi-
ciently close to the solution. Note that it is not always possible to get an
exact solution using an iterative method; often the improvement method
moves the approximation part way, but not all the way, to the answer. As a
result, termination of the iteration is often based on getting an approxima-
tion of the error less than some threshold.

The method you will use today is known asNewton’s methodand is used
to calculate the roots of functions. You will apply it to a quadratic equation;
this will allow you to check the solutions, and will also prevent you from
running into some pitfalls of the method that are beyond the scope of what
we can cover today.

CSCI 203 Page 7 November 18–19, 2002

Numerical Problems Lab 9

4.1 Basic Step

The basic step in Newton’s method involves calculating a new value for the
approximation. Letf be the function for which we are trying to find a root.
We will use a simple quadratic equation as an example.

f (x) = x2 +x−2

Since this equation can be factored as(x−1)(x+ 2), it has roots at 1 and
−2. Letx be the variable holding the approximation, and letf ′(x) = 2x+1
be the derivative off . The new value of the approximationxi+1 is computed
using the following:

xi+1 = g(xi) = xi −
f (xi)
f ′(xi)

CSCI 203 Page 8 November 18–19, 2002

Numerical Problems Lab 9

Here is a table of values forf andg.

Iteration i = 1 i = 2 i = 3

xi 2 1.2 1.011765

f (xi) 4 0.64 0.035433
g(xi) 1.2 1.011765 1.000046

In the table above, the 2 in the first column is the initial guess for a root.
This value is used to generate the next approximation (of a root), 1.2. Then
1.2 appears at the top of the next column and is used to produce the next
approximation. This is the process your program should produce. Notice
that as the new approximations are generated that the values computed for
f (xi) get closer to 0.

Write C++ functions forg and f . You may either writef ′ as an function or
just write its definition where it belongs ing. Make sure that both functions
take the proper argument and return a value of the proper type. Test your

CSCI 203 Page 9 November 18–19, 2002

Numerical Problems Lab 9

program by printing the value ofg applied to a few values. Note thatg(1) =
1 andg(−2) = −2. Also check the value ofg(0); what should it be?

4.2 Input

The program also needs input from the user, who must supply both an initial
guessx and an error bounde; both values are doubles. Write a function
getGuess to read these two values and assign them tox ande. Use input
validation to make sure that the value fore is between 0.0 and 0.1.Hint:
You need to set two values from a single function. What sort of parameters
should you use?

4.3 Stopping the Iteration

We stop the iteration when the approximation is close enough to the solu-
tion. Since we are looking for a root, we check forf (xi+1) to be close to
zero or less than the parametere;

| f (xi+1)| < e

CSCI 203 Page 10 November 18–19, 2002

Numerical Problems Lab 9

The bars mean to take the absolute value. You may use the absolute
value functionfabs() which is in thecmath library.

4.4 Writing the Program

Now you are ready to write the program to approximate roots. The steps are
as follows:

• Read in the values forx ande.

• Iterate (i.e.,repeat) the process of settingx to g(x) until the absolute
value off(x) is less thane. You should include a counter to keep
track of how many iterations are required until the program termi-
nates.Optional: It is also useful to include the counter in the loop
condition: If something goes wrong and the number of iterations ex-
ceeds say 10000, then you may as well terminate the loop and print
an error message.

• Once the loop terminates, print out the approximation of the root and
the number of iterations required as part of a suitable message. (If

CSCI 203 Page 11 November 18–19, 2002

Numerical Problems Lab 9

you did theoptional part above, this is the place that you can deter-
mine whether the threshold was exceeded or not, and print a suitable
message.)

Once you get your program working, try the initial guess 2 with the error
thresholds 0.1, 0.01, and 0.0001. Hand in the results from these three runs.
Now try 3 different initial guesses with the error threshold 0.01; see which
root each converges to. Hand in the results of these runs as well, and print
your program too.

5 What To Hand In

• Monte Carlo Simulation: Program and results of 3 test runs.

• Finding Roots: Program and results of 6 test runs for the specified
inputs.

CSCI 203 Page 12 November 18–19, 2002

