Numerical Problems Lab ¢

1 Purpose

This lab illustrates the use of looping structures by introducing a clas
programming problems called numerical algorithms.

1. Practice the use of the~Qepetition constructs ofor, while, and
do-while.

2. Use computer-generated random numbers.

3. Explore the solution to several numerical problems.

2 Introduction

In this lab, you will write a program to estimate the valueradind a second
program to the find the roots of an equation.
Create d.ab9 directory and do your work there.

CSCI 203 Page 1 November 18-19, 20



Numerical Problems Lab ¢

3 Monte Carlo Simulation

Your task in this part of the lab is to write a program that uses a monte ¢
simulation (hamed after the famous casinos of Monte Carlo) to estir
the value ofr. To do so you will use a probabilistic method that relies
random numbers.

This is how it works. Suppose that we have a square with sides of le
1.0, and the upper right quarter of a circle inside the square with a radi
1. The area of a circle isr2. Since we have only a quarter of a circle al
r =1, the area inside the quarter circleris4.

CSCI 203 Page 2 November 18-19, 20



Numerical Problems Lab ¢

(0,1)

Unit Circle

(0,0) (1,0)

The idea is to throw random darts at the square and then to cour
darts that fall inside the circle, and the total number of darts. Given tha
darts are produced in a truly random fashion, i.e., with uniform distribut
the probability of a dart falling in the circle is the ratio of the number

CSCI 203 Page 3 November 18-19, 20



Numerical Problems Lab ¢

darts in the circle to the total number of darts:
#in circle

robability in circle=
P y total #

This probability, however, is also equal to the ratio of the area of the ci
to the area of the square. Since the square has an area of 1, thisnatfo i
So solving forr we get the following:

probability in circle= %
7 = 4 x probability in circle

That s, o
#in circle

total #
So this is how we estimate using random numbers.
Now how do we do this in a program? In thes203/Labs/Lab9 di-
rectory you will find a file callegzetRandom.h. Include this file into your

CSCI 203 Page 4 November 18-19, 20



Numerical Problems Lab ¢

program. Look at the filgetRandom.h and read the comments. To gene
ate a random number simply call the functibimi tRandom() onceto ini-
tialize the random numbers and then call the functiemRandom() each
time you need a random number. For example,

x = getRandom() ;

This function will return a random double |@.0,1.0) where the T” means
itincludes 0.0 and the)” means it does not include 1.0. Each point wher
dart hits will require two random numbers: one for thealue of the point,
and one for they value of the point. We are generating points in the fi
guadrant of the circle only becausandy are always between 0.0 and 1.
To compute your estimate af, you will need to count up the numbe
of darts and the number of darts that fall within the circle. Points within
circle will have a distance from the origin that is less than 1; that is,

VX2 +y?<1.0

How many darts to generate? Start by throwing 100 darts.

CSCI 203 Page 5 November 18-19, 20



Numerical Problems Lab ¢

After you write your program, you should carry out three experimel
test runs on your program with 100, 1000 and 10,000 darts. This will
you some idea of how much the estimates can vary. Put the results of
runs and a listing of your working program in ych#indin . txt file.

4 Finding the Roots of a Function

Many mathematical problems can be solved exactly by applying a proce
or algorithm. For example, there is an explicit formula for computing
roots of a quadratic equation. Likewise, a formula exists for computing
roots of cubic polynomials (those with degree 3). But for many proble
(e.g., polynomials of degree 5 and higher), no such explicit formula ex
and methods to compute an approximate value must be used.
Iterative methodsire approximation methods which often lend the
selves to implementation on computers. In an iterative method one b
with a guess of the solution, then using that guess, computes a bett
proximation of the solution. If the method is well-designed and the gue

CSCI 203 Page 6 November 18-19, 20



Numerical Problems Lab ¢

reasonable, the new approximation is closer to the solution than the «
nal guess. The method of computing a better approximation can be ar
to our new approximation in turn, producing an even better approxima
This approach can be repeated (iterated) until the approximation is ¢
ciently close to the solution. Note that it is not always possible to ge
exact solution using an iterative method; often the improvement me
moves the approximation part way, but not all the way, to the answer.
result, termination of the iteration is often based on getting an approx
tion of the error less than some threshold.

The method you will use today is knownldswton’s methodnd is used
to calculate the roots of functions. You will apply it to a quadratic equati
this will allow you to check the solutions, and will also prevent you frc
running into some pitfalls of the method that are beyond the scope of !
we can cover today.

CSCI 203 Page 7 November 18-19, 20



Numerical Problems Lab ¢

4.1 Basic Step

The basic step in Newton’s method involves calculating a new value fol
approximation. Leff be the function for which we are trying to find a roc
We will use a simple quadratic equation as an example.

f(x) =X +x—2

Since this equation can be factored(as- 1)(x+ 2), it has roots at 1 anc
—2. Letx be the variable holding the approximation, andflék) = 2x+ 1
be the derivative of . The new value of the approximatian_; is computed
using the following:

CSCI 203 Page 8 November 18-19, 20



Numerical Problems Lab ¢

Here is a table of values fdrandg.

Iteration i=1 i=2 i=3
Xi 2 12 1.011765
f(x) 4 0.64 0.035433
() 1.2 1011765 1.000046

In the table above, the 2 in the first column is the initial guess for ar
This value is used to generate the next approximation (of a root), 1.2.
1.2 appears at the top of the next column and is used to produce the
approximation. This is the process your program should produce. N
that as the new approximations are generated that the values comput
f(x) get closer to 0.

Write C+ functions forg andf. You may either writef’ as an function or
just write its definition where it belongs tn Make sure that both function
take the proper argument and return a value of the proper type. Test

CSCI 203 Page 9 November 18-19, 20



Numerical Problems Lab ¢

program by printing the value afapplied to a few values. Note thg{l) =
1 andg(—2) = —2. Also check the value a(0); what should it be?

4.2 Input

The program also needs input from the user, who must supply both ani
guessx and an error bound; both values are doubles. Write a functic
getGuess to read these two values and assign them éamde. Use input
validation to make sure that the value frs between 0.0 and 0.Hint:
You need to set two values from a single function. What sort of parame
should you use?

4.3 Stopping the Iteration

We stop the iteration when the approximation is close enough to the
tion. Since we are looking for a root, we check fiixi 1) to be close to
zero or less than the parameger

f(xsn) <e

CSCI 203 Page 10 November 18-19, 20



Numerical Problems Lab ¢

The bars mean to take the absolute value. You may use the ab:s
value functionfabs () which is in thecmath library.

4.4 Writing the Program

Now you are ready to write the program to approximate roots. The step
as follows:

e Read in the values far ande.

o lterate (i.e.repeat) the process of settingto g(x) until the absolute
value off (x) is less thare. You should include a counter to kee
track of how many iterations are required until the program ter
nates.Optional: It is also useful to include the counter in the loc
condition: If something goes wrong and the number of iterations
ceeds say 10000, then you may as well terminate the loop and
an error message.

e Once the loop terminates, print out the approximation of the root
the number of iterations required as part of a suitable message

CSCl 203 Page 11 November 18-19, 20



Numerical Problems Lab ¢

you did theoptional part above, this is the place that you can det
mine whether the threshold was exceeded or not, and print a suli
message.)

Once you get your program working, try the initial guess 2 with the e
thresholds 0.1, 0.01, and 0.0001. Hand in the results from these three
Now try 3 different initial guesses with the error threshold 0.01; see wi
root each converges to. Hand in the results of these runs as well, and
your program too.

5 What To Hand In

e Monte Carlo Simulation: Program and results of 3 test runs.

e Finding Roots: Program and results of 6 test runs for the spec
inputs.

CSCl 203 Page 12 November 18-19, 20



