
Programming Style

The idea with program style is to have areadableprogram. Poor style
can lead to programs which are error-prone, difficult to read, and difficult to
understand. The purpose of this recommended style is not to force you into
a certain way of programming, but rather to give you a model of good style
from which you can evolve your own style. If the wordmust appears in a
style description that specific style will be required inall programs. In the
other cases, if you don’t use the recommended style it is up to you to use
some othergood(judged by the instructor) style. Be sure when adopting a
programming style that it is not only readable, but also consistent over all
statement types.

1. Every program must have a header as follows:

/***
* *
* Programmer: Tony Toledo *
* Course/Lab Section: CSCI203-1 *
* Date: 9/29/02 *

CSCI 203 Page 1 Fall 2002

Programming Style

* *
* Problem Statement: This program *
* *
***/

TheComment/Uncomment Blockfeature ofemacs makes this very
easy to do.

2. Each logical segment of code must be preceded by a descriptive com-
ment and a blank line.

3. Operators such as=, +, <, etc., must be surrounded by blank charac-
ters. For example:

x = x + 1;

4. Object and function names must be meaningful and start with a lower
case letter. Each word in the name should begin with an upper case
letter. Here is an example:numItems.

CSCI 203 Page 2 Fall 2002

Programming Style

5. You must indent C++ statements that contain braces. Here is the rec-
ommended style.

for (int i = 0; i < n; i++) {
S1;
S2;

}

while (i < n) {
S1;
S2;

}

if (a < b + 1)
S1;

else {
S2;

CSCI 203 Page 3 Fall 2002

Programming Style

S3;
}

if (a > b) {
S1;
S2;

} else {
S3;
S4;

}

switch (x) {
case 1:

S1;
break;

case 2:
S2;

CSCI 203 Page 4 Fall 2002

Programming Style

break;
case 3:

S3;
break;

default:
S4:
break;

}

6. Functions must be preceded by a comment block that states its pur-
pose, pre-conditions, and post-conditions.

7. When possible, use assertions to verify pre-conditions and post-
conditions.

CSCI 203 Page 5 Fall 2002

