
CSCI 203 Project #5 (Due 2002-10-30) Fall 2002

Objective

Practice selection and repetition.

Introduction

This project is an extension of Project 4; you will make use of the class
DividendAccount (as you modified it last week) but to solve a new problem.

You are to write a C++ program that allows the user to create exactly one
DividendAccount object and then to specify as many withdrawals and deposits as
desired. When the sequence of deposits and withdrawals is complete the dividend
rate should be applied to the account and the final account status printed. Use the
following dialogue as a guide to this problem’s specification:

Enter account name: home
Enter balance: 500.0
Enter dividend rate (between 0 and 100.00): -3
Enter dividend rate (between 0 and 100.00): 3

W)ithdraw, D)eposit, or Q)uit: D
Enter deposit ammount: 250.0
W)ithdraw, D)eposit, or Q)uit: D
Enter deposit ammount: -100.0
Enter deposit ammount: -10.0
Enter deposit ammount: 100.0
W)ithdraw, D)eposit, or Q)uit: W
Enter withdrawal amount (between 0 and 850.00): 1000
Enter withdrawal amount (between 0 and 850.00): -100
Enter withdrawal amount (between 0 and 850.00): 100
W)ithdraw, D)eposit, or Q)uit: A
Enter W, D, or Q: B
Enter W, D, or Q: Q

Account Name: home
Account Balance: $751.88
Number of withdrawals: 1
Number of deposits: 3

All input data must be validated — there are three different situations for this
validation.

CSCI 203 Page 1 Project #5

CSCI 203 Project #5 (Due 2002-10-30) Fall 2002

• The dividend rate and withdrawal amount must fall between zero and an
upper bound. For the dividend rate the value must a real value between 0
and 1; the withdrawal amount must be between 0 and the current balance.

• The initial balance and deposit amount must be validated to be positive.

• Menu data must be validated to be one of the upper-case lettersW, D, Q.

Details

This project is significantly larger than previous projects in the course. To make it
more manageable, here are some suggestions.

1. Implement the problem assuming all data entered is correct. This means you
can write input functions which just prompt, input a value, and then return
the value. You can make use of the functiongetDouble from last week.

2. Rewrite the function from Project 4 calledgetAccountInfo so that it
doesn’t take a prompt parameter and so that it reads the initial balance and
dividend rate by callinggetDouble.

3. Implement a functiongetAnswer with signature.

char getAnswer(const string & prompt)

which prompts (as indicated in the sample output) and inputs a character
value — return that character value. Remember at this point that you should
assume the input value is valid.

4. Implement themain function so that it initializes the account and then allows
the user to make a sequence of withdrawals and deposits.

Complete the program so that it works as described so far.

5. Modify getDouble so that it has the following interface.

double getDouble(const string & prompt,
double lower)

// Post: val is the first input value such that
// val >= lower
// return val

CSCI 203 Page 2 Project #5

CSCI 203 Project #5 (Due 2002-10-30) Fall 2002

The new function returns when a valid value is entered – that means a value
which is greater than or equal to the parameterlower. Add this function to
your implementation and test it. In this program the lower value is always
zero.

6. Implement a new input functiongetBoundedDouble based ongetDouble
which has the following signature.

double getBoundedDouble(const string & prompt,
double lower,
double upper)

// Pre: lower < upper
// Post: val is the first input value such that
// lower <= val <= upper
// return val

The new function returns a data value only if it falls within the specified
range.

Add this function to your program, modify the appropriate calls (i.e., for
inputting dividend rate and withdrawal amount), and test the program.

7. Finally, modifygetAnswer so that it will return only when a valid character
is entered. Here’s the appropriate new interface.

char getAnswer(const string & prompt)
// Post: val is the first input value such that
// val == ’D’ OR val == ’W’ OR val == ’Q’
// return val

8. This assignment must adhere to the CSCI 203 Style Guidelines.

It is important to know that you can use the same make file as you did last
week as well as the sameDividendAccount.cc andDividendAccount.h files.
The file containingmain and the other functions mentioned above should have a
similar structure to the corresponding file from Project 4.

Relax — apply the techniques discussed class and if you have any questions or
difficulties talk to your instructor.

CSCI 203 Page 3 Project #5

CSCI 203 Project #5 (Due 2002-10-30) Fall 2002

What to Hand In

Hand in the code for the final version of your program along with an execution
which illustrate that the program works correctly. You should demonstrate that the
program correctly handles invalid input data, as required in the project.

CSCI 203 Page 4 Project #5

