CSCl1 203 Project #8 (Due Tuesday December 10, 2002) Fall 2002

Objective
e build a reactive grid-bot
e practice designing and building a finite state machine (FSM)
e practice using vectors

e practice using classes

Specifications

In this project you will write a program that uses the Grid class from Chapter 4 of
the Mercer text. You will design and implement a program that reactively controls
the actions of a software robot (grid-bot). To do this you will use a finite state

machine (FSM) that controls the action of the grid-bot.
The grid is a 20 (rows) by 30 (columns) grid that looks like this:

012345678910 12 14 16 18 20 22 24 26 28 29

The Grid class is found in your Mercer book on pages 123-127. Please refer to
these pages when you are doing your project. You will need to make use of most

CSCl 203 Page 1 Project #8

CSCl1 203 Project #8 (Due Tuesday December 10, 2002) Fall 2002

of the methods provided, including the other grid operations found on page 126.
For this project we have produced a new Grid class implementation in the form of
two files grid.ccand grid.h. There is also a Makefile which you can use. You
can copy these files from the directory ~cs203/Projects/Projects.

In addition to these methods, we have added two new methods, getFacing()
and cookieIsHere (). The getFacing method returns the corresponding integer
value for the specified direction:

0 north
1 east

2 south
3 west

depending on which way the grid-bot is facing. This function will be useful in order
to get the grid-bot to return home. The method cookieIsHere() is a boolean
method which returns true if the grid-bot’s current square contains a cookie. The
utility of this method will become clear shortly.

To construct the grid shown above, copy the file ~¢s203/Projects/
Project8/grid.dat into your project directory. Notice that this file contains
a list of all the blocks on the grid. Each line in the file contains a row number
followed by a column number. You should not need to store these blocks since
they can be placed directly into the grid from the file. The intention is that the
file contains correct data, but you should check each input pair and ignore any pair
whose row or column value is out of bounds.

As you input the block coordinates, you should create a vector of the block
locations. This vector should take Point objects — remember the Point class
from earlier in the semester. You will implement the Point class and then create
the vector of blocks which are actually placed on the grid. This use of this vector
is described in the next paragraph.

Your program will also take as input a list of cookies. These cookies have two
integers as coordinates (just like the blocks). You may design your program to
read the cookies location either from the keyboard or from a file. If you input from
the keyboard then validate the input as usual (loop until a correct pair is entered)
and if the input is from a file process as you do the blocks (described above). One
additional requirement here is that a cookie cannot have the same position as a
block. Part of the cookie validation is to only accept a pair if it doesn’t coincide
with a block location. You must do a search of the block vector to do this check.

CSCl 203 Page 2 Project #8

CSCl1 203 Project #8 (Due Tuesday December 10, 2002) Fall 2002

Generating Moves

You should use a random number generator to determine a potential move. To do
this, include the file <unistd.h> in your program. Then call the function srandom
once at the beginning of your program as follows.

srandom(getpid());

Then you can use the function random() to produce random numbers. See the
file http://www.eg.bucknell.edu/ zaccone/csci203/largest.cc for an
example that uses random () and srandom().

You will need to write a function to generate a potential move. You can rep-
resent your moves as integers. Use the mod function on your random value to
determine which move to make.

int i = random()%6;

Note: Each move does not have to have the same probability — for example, you
could make 0-4 be a move-forward, 5 be a turn left, 6 and 7 be a turn right, and 8
be a pick-up cookie.

The meaning of a potential move will be determined by a finite state machine
(FSM), which will be described in the next section. This means that you will have
to first generate the potential move and then let the finite state machine interpret
the move based on the current state of the machine and other factors. The moves
which the grid-bot can carry out are:

1. turn left,
2. turn right,
3. move forward one space, and

4. pick-up a cookie.

The Finite State Machine

The FSM has six states and transitions are driven by the next move (randomly
generated) and the status of the grid-bot’s current grid square location.

FSM transitions are described as follows. Notice that for each state the possible
transitions are described: what condition will cause a transition to be taken, the
action to be carried out for that transition, and the next state to be visited.

CSCl 203 Page 3 Project #8

CSCl1 203 Project #8 (Due Tuesday December 10, 2002) Fall 2002

1. WANDER — This is the machine’s start state.

If the current square contains a cookie then there is no action and the next
state is the PICKUP state (no matter what the generated move is). Assuming
the current square is empty (except for the grid-bot), if the generated move
is “move forward one space” and the square in that direction is a block, then
there is no action and the next state is the AVOID state; if the generated move
is “pick-up a cookie” then no action occurs and the next state is the WANDER

state. For all other moves, “turn left”, “turn right”, or “move forward one
space”, carry out the move and the next state is the WANDER state.

2. AVOID — If the grid-bot is in this state then there is a block blocking a move
straight ahead (in the direction the grid-bot is currently pointed).

If the generated move is a turn either to the left or right then the move is
carried out and the next state is the WANDER state. For all other moves there
is no action and the next state is the AVOID state.

3. PICKUP — If the grid-bot is in this state then it is “standing” on a cookie
which must be picked up.

If the generated move is “pick-up a cookie” then the action is carried out; if
the cookie count is greater than zero then the next state is the WANDER state;
if the cookie count is zero then the next state is the RETURN state. If any other
move is generated, there is no action and the next state is the PICKUP state.

4. RETURN — If the grid-bot is in this state then it has picked up all the cookies
and is trying to return to square (0,0).

If the current grid square is (0,0) then no action is taken and the next state is
the DONE state.

If the generated move is a turn, either left or right, then carry out the action
and the next state is the RETURN state. If the move is “move forward one
space” and the direction of motion would cause the row or column number
of the grid-bot to increase, then there is no action and the next state is the
RETURN state. If the move is “move forward one space” and the row and col
decrease or remain the same, then carry out the action if the facing square is
not blocked and the next state is the RETURN state, but if the facing square is
blocked then there is no action and the next state is AVOIDonRETURN.

5. AVOIDonRETURN — If the grid-bot is in this state then there is a block block-
ing a move straight ahead and the cookie-count is zero.

CSCl 203 Page 4 Project #8

CSCl1 203 Project #8 (Due Tuesday December 10, 2002) Fall 2002

If the generated move is a turn either to the left or right then the move is
carried out and the next state is the RETURN state. For all other moves there
is no action and the next state is the AVOIDonRETURN state.

6. DONE — The finite state machine halts.

Design

Draw a finite state diagram of the FSM described above. In that diagram attempt
to identify the conditions for each transition, and the actions that will take place on
those transitions. Recall that a transition is the arc or edge that connects one state
to another.

Implementation Ideas

In order to verifyReturnMoves you should consider which direction the grid-bot
is facing, and its row and column. These will need to be compared with the origin.

You can use a global counter to figure out if the grid-bot has collected all the
cookies. If the global counter has reached the the initial number of cookies , you
are done.

After each move you will want to display your grid. This will allow you to
see how the grid-bot is doing. Also output, just after the grid display, the number
of moves so far (keep a counter), current state of the grid-bot, and the number of
cookies remaining. [Write a function displayState () which displays the state
name.]

Hand In

1. The state diagram for your FSM. This must be very neat! Use a drawing
program if possible.

2. The final source code. Be sure to include appropriate pre and postconditions
as well as assertions and/or assert calls, according to the style encouraged
by your instructor.

3. A sample run from your program. To prepare your output for handing in,
run the program and copy the output to a file (using emacs). Edit the file and
remove the grid display for all moves EXCEPT the initial grid, the final grid,
and the grid which is displayed on the step just after each cookie is picked
up. Leave two blank lines between grid displays.

CSCl 203 Page 5 Project #8

