
O i f C P iOverview of C Programming

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and Professor Phil
Kearns of William & Mary.

CSCI 315 Operating Systems Design 1

What is C?What is C?
• C is a high level programming language used mostly for

systems programming including operating systems.y p g g g p g y
• C was created between 1969 and 1973 by Dennis

Ritchie of AT&T Bell Lab when designing and
i l ti th UNIX ti timplementing the UNIX operating system

• C is the used to develop Linux as well
• Many modern programming languages borrowed ideas• Many modern programming languages borrowed ideas

and features from C, including C#, D, Go, Rust, Java,
JavaScript, Limbo, LPC, Objective-C, Perl, PHP, and
P thPython
– http://en.wikipedia.org/wiki/C_(programming_language)

CSCI 315 Operating Systems Design 2

A Short C ProgramA Short C Program
• hello.c:

Similar to “import” in Java or Python

#include <stdio.h>
int main(int argc, char* argv[]) {

printf(“Hello World!\n”);
t 0return 0;

}
Identical to Java,
similar to Python
function

• Compile and execute a C program:
%gcc -o hello hello.c
%./hello

CSCI 315 Operating Systems Design 3

Why C?Why C?

• In contrast to Python or Java:In contrast to Python or Java:
– C has direct access to operating systems

resources librariesresources, libraries.
– C is efficient (light-weight)
– C is extensively used in embedded systems– C is extensively used in embedded systems

and operating systems
– C requires minimal run-time supportC requires minimal run time support

CSCI 315 Operating Systems Design 4

Pitfalls of CPitfalls of C

• We will see many pitfalls of C two mostWe will see many pitfalls of C, two most
critical ones:

Pointers and addresses– Pointers and addresses
– Cryptic error messages (though they have

been much improved over the years)been much improved over the years)

CSCI 315 Operating Systems Design 5

Workflow of C ProgramsWorkflow of C Programs

hello.c compiler hello.o linker hello

CSCI 315 Operating Systems Design 6

Workflow of C ProgramsWorkflow of C Programs

library

hello.c compiler hello.o linker hello

source object t bl

pre- compiler assembler

source object executable

p
processor

p

CSCI 315 Operating Systems Design 7

Basic Data TypesBasic Data Types

#include <stdio.h>
int main(int argc, char*argv[]) {

int i = 7;
float x = 2.71828;
double y = 3.1415926;
char c = ‘w’;

printf (“%d, %c, %f, %lf\n”, i, c, x, y);

return 0;
}

CSCI 315 Operating Systems Design 8

ScopeScope
{

i t i 999int i = 999;
int j = 666;
printf(“i = %d, j = %d\n”, i, j);
{{

int i = 123;
int j = i*i;
printf(“i = %d, j = %d\n”, i, j);

}}
printf(“i = %d, j = %d\n”, i, j);

}

i = 999, j = 666
i = 123, j = 15129
i = 999 j = 666

CSCI 315 Operating Systems Design 9

i 999, j 666

Program’s View of MemoryProgram s View of Memory
Stack

High address

d iStack dynamicVariables inside functions, activation records

Memory available to the program

D t

Heap dynamicDynamically allocated data (malloc and others)

Code

Data

static

static

Y i hi l

Your program’s global values, variables

Low address

staticYour program in machine language

CSCI 315 Operating Systems Design 10

RepetitionsRepetitions
int sum = 0;
int k;
for (k = 0; k < 100; k ++)

sum += k; int sum = 0;
int k = 0;int k = 0;
while (k < 100) {

sum += k;
k ++;

}int s m 0 }int sum = 0;
int k = 0;
do {

sum += k;
k ++;

} while (k < 100);

CSCI 315 Operating Systems Design 11

SelectionsSelections

if (k < 100) { s itch (score) {if (k < 100) {
sum += k;

}

switch (score) {
case 0:

grade = ‘A’;
break;

if (k < 100) {
sum += k;

} else {

case 1:
grade = ‘B’;
break;

default:} else {
sum += 1;

}

default:
grade = ‘C’;

}

if (k < 100 && sum < 1000) {
sum += k;

}

CSCI 315 Operating Systems Design 12

FunctionsFunctions

double square(double v) {

parameter

return type

double square(double v) {

if (v < 0)
v *= -1;

return v * v;
}

CSCI 315 Operating Systems Design 13

ArraysArrays

double values[10];double values[10];

values[0] = 1;
values[1] = 3;
…
values[10] = 14;

Out of range! C compiler doesn’t check it. You have to!

CSCI 315 Operating Systems Design 14

StructuresStructures
Structure is a type definition

struct employee {
char * name;
int id;
d bl

Define a variable of the type employee
double wage;

}; struct employee boss;
struct employee programmers[20];

Pass structure as parameter(s) and access its fields

void print_employee(struct employee person) {
printf(“name : %s\n“, person.name);
printf(“id %d and salary %12.2f\n”, person.id, person.wage);

}

CSCI 315 Operating Systems Design 15

}

PointersPointers
Pointers are just addresses to a variable

char * s;

j

1. Declarations:

e >id = k;

3. Some opeartions

;
int * p;
int k;
struct employee * e;

e->id = k;
strcpy(e->name, “Jane Doe”);
p = &k;
printf(“name : %s\n”, e->name);

struct employee e = (struct employee *)malloc(sizeof(struct employee));

2. Allocate memory
p = &(e->id);

struct employee e = (struct employee)malloc(sizeof(struct employee));
e->name = (char*)malloc(30);
s = (char *)malloc(20);

CSCI 315 Operating Systems Design 16

Pointer and arrayPointer and array
A pointer is simply an address for a variable;
So is the name of an array;So is the name of an array;

char * s;
s = (char*)malloc(20);
[0] ‘ ’s[0] = ‘a’;

s[1] = ‘b’;
s[19] = ‘\0’; // or s[19] = 0;

&(s[i]) == s+i

struct employee * e = (struct employee *)malloc(3 * sizeof(struct employee));
e[2].id = 4; strcpy(e[1].name, “Alice”); strcpy(e[0].name, “Bob”);
printf(“e[2].id == %d --- e[0].name == %s\n”,e[2].id, e[0].name);

e[2].id == 4 --- e[0].name == Bob Printed result

CSCI 315 Operating Systems Design 17

Multi-file programsMulti file programs

void print array(int[] int); // prototype

main.c

support cvoid print_array(int[], int); // prototype

int main(int argc, char*argv[]) {
#include <stdio.h>
void print array(int v[] int c) {

support.c

int v[] = {4, 6, 2, 1};
print_array(v, 4);

return 0;

void print_array(int v[], int c) {
int k = 0;
for (k = 0; k < c; k ++)

printf(“v[%d] == %d\n”,k,v[k]);return 0;
} }

Linux command to compile and run the program mainLinux command to compile and run the program main

%gcc –c main.c support.c
%gcc –o main main.o support.o
% /main

v[0] == 4
v[1] == 6Printed result

CSCI 315 Operating Systems Design 18

%./main []
v[2] == 2
v[3] == 1

Printed result

Input in CInput in C
Reading information into variables in C can be tricky.
Th l t i t di i f ti i t th dd f i blThe general concept is to readi information into the address of a variable.

Assume we have defined:
Reading from keyboard (stdin):

scanf(“%d”, &k);
scanf(“%s”, s);
scanf(“%c”, &c);

int k;
char s[32];
char c;;
FILE * f = fopen(“test.txt”, “r”);

Reading from a file:

fscanf(f, “%d”, &k);
fscanf(f, “%s”, s);
fscanf(f, “%c”, &c);

s can’t contain white spaces

CSCI 315 Operating Systems Design 19

Reading stringsReading strings
scanf(“%s”, s) will stop at any white space, consecutive calls to
scanf() will skip the white space chars.

For example, if the input is “hello world!”, the above statement
will only read “hello” into s. Next call to scanf() will read “world!” into a variable

To read text containing white spaces (‘ ‘, tab, ret), use gets() from
keyboard input, or fgets() from a file. fgets() stops at the first occurrence of
the newline char.

Caution: scanf() will leave the newline char in the buffer, while fgets() will
store the newline char with the read buffer.

Wh t ill th t li d f i t “h ll \ ld?”?What will these two lines do for input “hello\nworld?”?

fscanf(f, “%s”, s1);
fgets(f, “%s”, s2).

s1 == “hello”
s2 == “\n”

CSCI 315 Operating Systems Design 20

fgets(f, %s , s2). s2 == \n

An application problemAn application problem

• Read a file containing a student courseRead a file containing a student course
selection information

• Print the contents• Print the contents
• Perform search as needed

CSCI 315 Operating Systems Design 21

Major componentsMajor components

• Read text fileRead text file
• Repetitions

St i i• String comparison
• Function calls
• Define and use structures
• Arrays and linked listsArrays and linked lists
• See <http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/c-

intro/>

CSCI 315 Operating Systems Design 22

Structure of the programStructure of the program

common.h

#include “common.h”

common.c course-selection-list.c

uses functions in common.c

CSCI 315 Operating Systems Design 23

Flow of program executionFlow of program execution

i () {

read_data() {
fopen();
read count;main() {

read_data();
print_records();
do search();

read count;
read first course number;
while (course_num != NULL) {

read next record;
insert the record into list;_ ();

}
insert the record into list;
read next course_num;

}

print_records() {
rec = head of list;
while (rec != NULL) {

print a record(rec);

do_search() {
read a query;

hil (! “END”) { print_a_record(rec);
rec = next on the list;

}
}

while (query != “END”) {
search list for query;
print result;
read a query;

}

CSCI 315 Operating Systems Design 24

}

