
1

CSCI 315 Operating Systems Design 1

Operating Systems Overview

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook 
authors Silberschatz, Galvin, and Gagne

What is an Operating System?

• A program that acts as an intermediary 
between a user of a computer and the 
computer hardware

• Operating system goals:• Operating system goals:
– Execute user programs

– Make the computer system convenient to use

– Use the computer resources (e.g., memory, 
storage, CPU) in an efficient manner

Four Components of a Computer 
System Computer System Organization

• Computer-system operation
– One or more CPUs, device controllers 

connect through common bus providing 
access to shared memory

Concurrent execution of CPUs and– Concurrent execution of CPUs and 
devices competing for memory cycles

What Operating Systems Do

• Depends on the point of view
– Users want convenience, ease of use

– System managers and owners want 
efficiency use of resources such as CPUefficiency use of resources such as CPU 
time, memory, and storage; ultimately saving 
money and serving business

Operating System Definition

• OS is a resource allocator
– Manages all resources

– Decides between conflicting requests for 
efficient and fair resource useefficient and fair resource use

• OS is a control program
– Controls execution of programs to prevent 

errors and improper use of the computer



2

Computer Startup

• bootstrap program is loaded at power-up 
or reboot
– Typically stored in ROM or EPROM, generally 

known as firmwareknown as firmware

– Initializes all aspects of system

– Loads operating system kernel and starts 
execution

– Linux command “ps –aef | less” to search for 
process 0 and process 1

Computer-System Operation
• I/O devices and the CPU can execute in parallel 

• Each device controller is in charge of a particular 
device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from 
local buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has 
finished its operation by causing an interrupt 
(e.g., by setting the interrupt bit in a register)

Common Functions of Interrupts
• Interrupt transfers control to the interrupt service 

routine generally, through the interrupt vector, 
which contains the addresses of all the service 
routines

• Interrupt architecture must save the address ofInterrupt architecture must save the address of 
the interrupted instruction

• A trap or exception is a software-generated 
interrupt caused either by an error or a user 
request (e.g., I/O, see MIPS syscall)

• An operating system is interrupt driven

Interrupt Handling
• The operating system preserves the state 

of the CPU by storing registers and the 
program counter (where?)

• Determines which type of interrupt has 
occurred (e.g., check interrupt register)

• Separate segments of code determine 
what action should be taken for each type 
of interrupt

Interrupt Timeline I/O Structure

• After I/O starts, control returns to user 
program only upon I/O completion (e.g., 
keyboard input, or reading file from disk)
– The user program is taken off the CPUg
– When the I/O is complete, the device 

(keyboard, or disk controller) sends an 
interrupt to the OS

– The OS saves the current process, handles 
the interrupt, the system continues …



3

Direct Memory Access (DMA)

• Device controller transfers blocks of data 
from buffer storage directly to main 
memory without CPU intervention, once a 
request is receivedrequest is received

• Only one interrupt is generated per block 
of data, rather than the one interrupt per 
byte

Storage-Device Hierarchy

Storage Structure

• Storage systems organized in hierarchy
– Speed: fast to slow (register, cache, memory …)

– Cost: expensive to cheap (register, cache, memory 
…)

– Volatility: 
• Maintain data with power, registers, cache, main 

memory

• Maintain data without power, solid state devices, 
magnetic and optic disks

Caching
• Important concept, performed at many levels in a 

computer (in hardware, operating system, 
software)

• Faster storage (cache) checked first to determine 
if information is there

Yes: information used directly from the cache– Yes: information used directly from the cache 

– No: data copied to cache from next level 
storage for use and keep it in the cache

• Cache smaller than storage being cached

– Cache management important design problem

– Cache size and replacement policy

How a Modern Computer Works

A von Neumann architecture

Symmetric Multiprocessing Architecture



4

A Dual-Core Design
• UMA and NUMA

architecture variations

• Multi-chip and multicore

• Systems containing all 
chips vs blade serverschips vs. blade servers
– Chassis containing multiple 

separate systems

Operating System Structure
• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy at all times
– Multiprogramming organizes jobs so CPU always has one to 

execute
– A subset of total jobs in system is kept in memory
– One job selected and run via job schedulingO e job se ec ed a d u a job sc edu g
– When it has to wait (for I/O for example), OS switches to another 

job

• Timesharing (multitasking) is logical 
extension in which CPU switches jobs so frequently that users can 
interact with its job while it is running, creating interactive
computing

Memory Layout for Multiprogrammed System

Operating system

Free memory

Address 0

Job 3

Job 2

Job 1

Address Max (e.g., 2 G)

Operation Mode
• Dual-mode operation allows OS to protect itself and 

other system components
– User mode and kernel mode 
– Mode bit provided by hardware

• Provides ability to distinguish when system is 
running user code or kernel coderunning user code or kernel code

• Some instructions designated as privileged, only 
executable in kernel mode

• System call changes mode to kernel, return from 
call resets it to user

• Increasingly CPUs support multi-mode operations
– i.e., virtual machine manager (VMM) mode for guest 

VMs

User Mode and Kernel Mode
• Timer to prevent infinite loop / process 

hogging resources
– Set the timer for specific period

– Generate interrupt when the timer expires

– System clock interrupts every “tick”, e.g., 10 
ms

– Set up before scheduling process to regain 
control or terminate program that exceeds 
allotted time

Operating System Components

• Process management
• Memory management
• Storage/file management
• I/O system• I/O system
• Protection and security



5

Types of Operating Systems

• General purpose OS: e.g., Windows, Linux

• Real time operating systems: e.g., airline 
reservation systems or control systems which 
has fixed response time requirement

• Embedded Operating System: e.g., Android 
for cell phones and tablets


