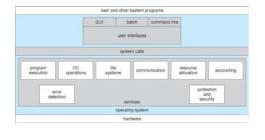


Operating System Services

- · One set of services for users
- The other set of services for system operations

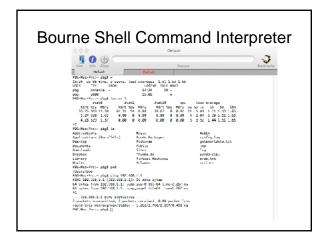
CSCI 315 Operating Systems Design

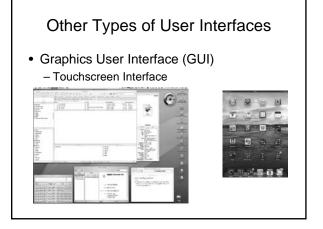
2


User Services

- · One set for the users:
 - User interface Almost all operating systems have a user interface (UI).
 - Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch
 - Program execution The system must be able to load a program into memory and to run that program
 - I/O operations A running program may require I/O, which may involve a file or an I/O device
 - File-system manipulation The file system is of particular interest.
 Programs need to read and write files and directories, create and delete them, search them, list file Information, permission management.
 - Communications Processes may exchange information, on the same computer or between computers over a network
 - Error detection and handling Deal with errors

System Operation Services


- Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing
 - Resource allocation When multiple users or multiple jobs running concurrently, resources must be allocated to each of them
 - Accounting To keep track of which users use how much and what kinds of computer resources
 - Protection and security The owners of information stored in a multiuser or networked computer system may want to control use of that information, concurrent processes should not interfere with each other


A View of Operating System Services

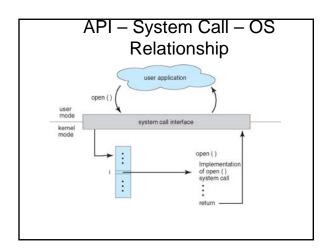
User Operating System Interface - CLI

- CLI or command line interpreter allows direct command entry
 - User types in a command as text
 - The CLI (a.k.a. shell) takes the command and sends it to the operating system kernel for proper action and display the result of the action to the user
- It is interactive.

System Calls

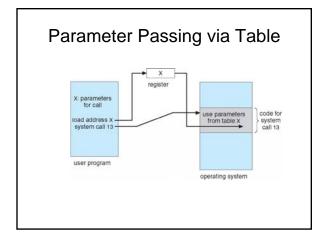
- Programming interface to the services provided by the OS
- Typically written in a high-level language (C or C++)
- Remember syscall in MIPS?
- Mostly accessed by programs via a highlevel Application Programming Interface (API) rather than direct system call use

Example of System Calls

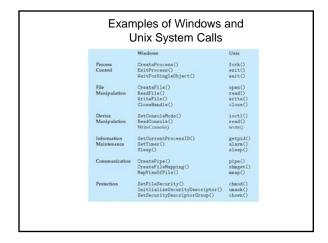

MIPS system call:

li \$v0, 1 # service 1 is print integer add \$a0, \$t0, \$zero # load value to register \$a0 syscall

Example of System Call API


Example of Use System Call

```
#include <unistd.h>
/* read a entire file*/
char * read_file(int fd) {
    char * content = malloc(MAXLEN + 1);
    ssize_t size_read;
    size_read = read(fd, content, MAXLEN)
    content[MAXLEN] = 0;
    return content;
}
```

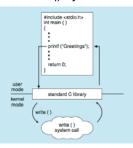


System Call Parameter Passing

- Three general methods used to pass parameters to the OS
 - Simplest: pass the parameters in registers
 - Parameters stored in a block, or table, in memory, and address of block passed as a parameter in a register
 - This approach taken by Linux and Solaris
 - Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating system
 - Block and stack methods do not limit the number or length of parameters being passed

Types of System Calls

- Process control
- · File management
- Device management
- Information maintenance
- Communications
- Protection

C Library Calls


- In addition to system calls, which map directly to the services provided by an OS, programming languages provide some libraries.
- C has a rich set of libraries, ranging from input/output to mathematics operations.

CSCI 315 Operating Systems Design

18

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

System Programs

- System programs provide a convenient environment for program development and execution.
- Provide a convenient environment for program development and execution

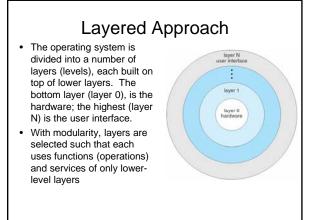
System Program Examples

- Text editors such as vi and emacs
- Compilers and interpreters such as Java, Python, and C
- · Assembler, loader, linker
- Web browsers, web servers
- Command line interpreter (a.k.a. shells)

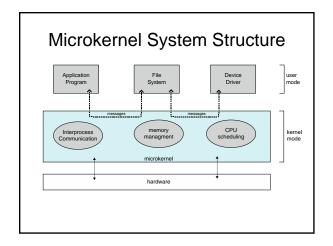
Operating System Structure

- General-purpose OS is very large program
- · Various ways to structure one as follows

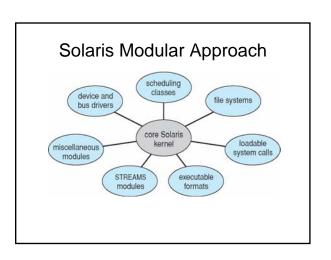
Simple Structure


- MS-DOS written to provide the most functionality in the least space
 - Not divided into modules
 - Although MS-DOS has some structure, its interfaces and levels of functionality are not well separated

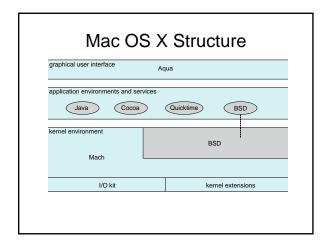
UNIX


- UNIX limited by hardware functionality, the original UNIX operating system had limited structuring. The UNIX OS consists of two separable parts
 - Systems programs
 - The kernel
 - Consists of everything below the system-call interface and above the physical hardware
 - Provides the file system, CPU scheduling, memory management, and other operating-system functions; a large number of functions for one level

Traditional UNIX System Structure Beyond simple but not fully layered (the users) shells and commands compilers and interpreters system libraries system-call interface to the kernel signals terminal file system swapping block I/O system lerminal drivers disk and tape drivers kernel interface to the hardware terminal controllers disks and tapes memory controllers physical memory


Microkernel System Structure

- · Moves as much from the kernel into user space
- · Mach example of microkernel
 - Mac OS X kernel (Darwin) partly based on Mach
- Communication takes place between user modules using message passing
- Benefits:
 - Easier to extend a microkernel
 - Easier to port the operating system to new architectures
 - More reliable (less code is running in kernel mode)
 - More secure
- Detriments:
 - Performance overhead of user space to kernel space communication


Modules

- Most modern operating systems implement loadable kernel modules
 - Uses object-oriented approach
 - Each core component is separate
 - Each talks to the others over known interfaces
 - Each is loadable as needed within the kernel
- Overall, similar to layers but with more flexible
 - Linux, Solaris, etc

Hybrid Systems

- Most modern operating systems actually not one pure model
 - Hybrid combines multiple approaches to address performance, security, usability needs
 - Linux and Solaris kernels in kernel address space, so monolithic, plus modular for dynamic loading of functionality
 - Windows mostly monolithic, plus microkernel for different subsystem *personalities*

iOS

- Apple mobile OS for iPhone, iPad
 - Structured on Mac OS X, added functionality
 - Does not run OS X applications natively
 - Also runs on different CPU architecture (ARM vs. Intel)
 - Cocoa Touch Objective-C API for developing apps
 - Media services layer for graphics, audio, video
 - Core services provides cloud computing, databases
 - Core operating system, based on Mac OS X kernel

Android

- Developed by Open Handset Alliance (mostly Google)
- · Similar stack to IOS
- · Based on Linux kernel but modified
 - Provides process, memory, device-driver management
 - Adds power management
- Runtime environment includes core set of libraries and Dalvik virtual machine
 - Apps developed in Java plus Android API
 - Java class files compiled to Java byte code then translated to executable that runs in Dalvik VM
- Libraries include frameworks for web browser (webkit), database (SQLite), multimedia, smaller libc

Android Architecture Application Framework Libraries SQLite openGL surface manager framework Webkit libc Android runtime Core Libraries Dalvik virtual machine

Performance Tuning

- Improve performance by removing bottlenecks
- OS must provide means of computing and displaying measures of system behavior
- For example, "top" program or Windows Task Manager

DTrace

- DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production systems
- Probes fire when code is executed within a provider, capturing state data and sending it to consumers of those probes
- Example of following XEventsQueued system call move from libc library to kernel and back

```
8 ./all.d 'pgrep xclock' XEventaQueued
dtrace: script './all.d' matched 52377 probes
CDU FUNCTION
0 -> XEventaQueued U
0 -> XEventaQueued U
0 -> XEventaQueued U
0 -> XIITTansBocketEytesPeadable U
0 -> XIITTansBocketEytesPeadable U
0 -> ioctl K
0 -> ioctl K
0 -> set_active_fd K
0 -> get_active_fd K
0 -> released K
0 -> clear_active_fd K
0 -
```

DTrace

 DTrace code to record amount of time each process with UserID 101 is in running mode (on CPU) in nanoseconds

```
sched:::on-cpu
uid == 101
{
    self->ts = timestamp;
}
}
sched:::off-cpu
self->ts
{
    otime(execname) = sum(timestamp = self->ts, self->ts = 0;
```

dtrace -s sched.d
dtrace -s sched.d
dtrace -s sched.d
dtrace -s sched.d
prome-settings-d 142354
gnome-vFs-daemon 158243
dasdm 189894
dock-applet 27844
dock-applet 378916
mapping-daemon 384475
sscreensaver 514177
metacity 59281
Xorg 2579646
gnome-terminal 5007269
mixer applet2 7388447
java 10769137

Figure 2.21 Output of the D code.

Operating System Generation

- Operating systems are designed to run on any of a class of machines; the system must be configured for each specific computer site
- SYSGEN program obtains information concerning the specific configuration of the hardware system
 - Used to build system-specific compiled kernel or system-tuned
 - Can general more efficient code than one general kernel

System Boot

- When power initialized on system, execution starts at a fixed memory location
 - Firmware ROM used to hold initial boot code
- Operating system must be made available to hardware so hardware can start it
 - Small piece of code bootstrap loader, stored in ROM or EEPROM locates the kernel, loads it into memory, and starts it
 - Sometimes two-step process where boot block at fixed location loaded by ROM code, which loads bootstrap loader from disk
- Common bootstrap loader, GRUB, allows selection of kernel from multiple disks, versions, kernel options
- Kernel loads and system is then running