
1

CSCI 315 Operating Systems Design 1

Operating Systems Structures

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook
authors Silberschatz, Galvin, and Gagne

Operating System Services

• One set of services for users

• The other set of services for system
operations

CSCI 315 Operating Systems Design 2

User Services
• One set for the users:

– User interface - Almost all operating systems have a user interface
(UI).

• Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

– Program execution - The system must be able to load a program
into memory and to run that program

I/O operations A r nning program ma req ire I/O hich ma– I/O operations - A running program may require I/O, which may
involve a file or an I/O device

– File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and
delete them, search them, list file Information, permission
management.

– Communications – Processes may exchange information, on the
same computer or between computers over a network

– Error detection and handling – Deal with errors

System Operation Services

• Another set of OS functions exists for ensuring the
efficient operation of the system itself via resource
sharing
– Resource allocation - When multiple users or

multiple jobs running concurrently, resources must be
ll t d t h f thallocated to each of them

– Accounting - To keep track of which users use how
much and what kinds of computer resources

– Protection and security - The owners of information
stored in a multiuser or networked computer system
may want to control use of that information,
concurrent processes should not interfere with each
other

A View of Operating System
Services

User Operating System
Interface - CLI

• CLI or command line interpreter
allows direct command entry
– User types in a command as text

– The CLI (a.k.a. shell) takes the command
and sends it to the operating system kernel
for proper action and display the result of
the action to the user

• It is interactive.

2

Bourne Shell Command Interpreter Other Types of User Interfaces

• Graphics User Interface (GUI)
– Touchscreen Interface

System Calls

• Programming interface to the services
provided by the OS

• Typically written in a high-level language
(C or C++)()

• Remember syscall in MIPS?

• Mostly accessed by programs via a high-
level Application Programming
Interface (API) rather than direct system
call use

Example of System Calls

MIPS system call:

li $v0, 1 # service 1 is print integer , p g
add $a0, $t0, $zero # load value to register $a0
syscall

Example of System Call API Example of Use System Call

#include <unistd.h>

/* read a entire file*/
char * read_file(int fd) {

char * content = malloc(MAXLEN + 1);();
ssize_t size_read;

size_read = read(fd, content, MAXLEN)
content[MAXLEN] = 0;
return content;

}

3

API – System Call – OS
Relationship

System Call Parameter Passing

• Three general methods used to pass
parameters to the OS
– Simplest: pass the parameters in registers
– Parameters stored in a block, or table, in

memory, and address of block passed as a
parameter in a registerparameter in a register

• This approach taken by Linux and Solaris

– Parameters placed, or pushed, onto the stack by
the program and popped off the stack by the
operating system

• Block and stack methods do not limit the number or
length of parameters being passed

Parameter Passing via Table Types of System Calls

• Process control

• File management

• Device management

• Information maintenance

• Communications

• Protection

Examples of Windows and
Unix System Calls C Library Calls

• In addition to system calls, which map
directly to the services provided by an OS,
programming languages provide some
librarieslibraries.

• C has a rich set of libraries, ranging from
input/output to mathematics operations.

CSCI 315 Operating Systems Design 18

4

Standard C Library Example

• C program invoking printf() library call,
which calls write() system call

System Programs
• System programs provide a convenient

environment for program development and
execution.

• Provide a convenient environment for program
development and executiondevelopment and execution

System Program Examples

• Text editors such as vi and emacs
• Compilers and interpreters such as Java,

Python, and C
• Assembler loader linkerAssembler, loader, linker
• Web browsers, web servers
• Command line interpreter (a.k.a. shells)

Operating System Structure

• General-purpose OS is very large program

• Various ways to structure one as follows

Simple Structure
• MS-DOS – written to

provide the most
functionality in the
least space
– Not divided into

modules

– Although MS-DOS
has some structure,
its interfaces and
levels of functionality
are not well separated

UNIX

• UNIX – limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts

Systems programs– Systems programs

– The kernel
• Consists of everything below the system-call interface

and above the physical hardware

• Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

5

Traditional UNIX System
Structure

Beyond simple but not fully layered

Layered Approach
• The operating system is

divided into a number of
layers (levels), each built on
top of lower layers. The
bottom layer (layer 0), is the
hardware; the highest (layer ; g (y
N) is the user interface.

• With modularity, layers are
selected such that each
uses functions (operations)
and services of only lower-
level layers

Microkernel System Structure
• Moves as much from the kernel into user space

• Mach example of microkernel
– Mac OS X kernel (Darwin) partly based on Mach

• Communication takes place between user modules
using message passing

B fit• Benefits:
– Easier to extend a microkernel

– Easier to port the operating system to new architectures

– More reliable (less code is running in kernel mode)

– More secure

• Detriments:
– Performance overhead of user space to kernel space

communication

Microkernel System Structure

Application
Program

File
System

Device
Driver

messagesmessages

user
mode

Interprocess
Communication

memory
managment

CPU
scheduling

microkernel

hardware

kernel
mode

Modules

• Most modern operating systems
implement loadable kernel modules
– Uses object-oriented approach

Each core component is separate– Each core component is separate

– Each talks to the others over known interfaces

– Each is loadable as needed within the kernel

• Overall, similar to layers but with more
flexible
– Linux, Solaris, etc

Solaris Modular Approach

6

Hybrid Systems

• Most modern operating systems actually
not one pure model
– Hybrid combines multiple approaches to

address performance, security, usability
needs

– Linux and Solaris kernels in kernel address
space, so monolithic, plus modular for
dynamic loading of functionality

– Windows mostly monolithic, plus microkernel
for different subsystem personalities

Mac OS X Structure
graphical user interface

Aqua

application environments and services

Java Cocoa Quicktime BSD

kernel environment

Mach

I/O kit kernel extensions

BSD

iOS
• Apple mobile OS for iPhone, iPad

– Structured on Mac OS X, added
functionality

– Does not run OS X applications natively
• Also runs on different CPU architecture

(ARM vs. Intel)

C T h Obj ti C API f– Cocoa Touch Objective-C API for
developing apps

– Media services layer for graphics,
audio, video

– Core services provides cloud
computing, databases

– Core operating system, based on Mac
OS X kernel

Android
• Developed by Open Handset Alliance (mostly

Google)

• Similar stack to IOS

• Based on Linux kernel but modified
– Provides process, memory, device-driver management

Add t– Adds power management

• Runtime environment includes core set of libraries
and Dalvik virtual machine
– Apps developed in Java plus Android API

• Java class files compiled to Java byte code then translated to
executable that runs in Dalvik VM

• Libraries include frameworks for web browser
(webkit), database (SQLite), multimedia, smaller libc

Android Architecture
Application Framework

Android runtime

Core Libraries

Libraries

SQLite openGL Core Libraries

Dalvik
virtual machine

SQLite openGL

surface
manager

webkit libc

media
framework

Performance Tuning

• Improve
performance by
removing
bottlenecks

• OS must provide
means of computingmeans of computing
and displaying
measures of system
behavior

• For example, “top”
program or Windows
Task Manager

7

DTrace

 DTrace tool in Solaris,
FreeBSD, Mac OS X allows
live instrumentation on
production systems

 Probes fire when code is
executed within a provider,
capturing state data and
sending it to consumers ofsending it to consumers of
those probes

 Example of following
XEventsQueued system call
move from libc library to
kernel and back

DTrace

 DTrace code to record
amount of time each
process with UserID 101 is
in running mode (on CPU)
in nanoseconds

Operating System
Generation

• Operating systems are designed to run on
any of a class of machines; the system must
be configured for each specific computer site

• SYSGEN program obtains information
concerning the specific configuration of the g p g
hardware system
– Used to build system-specific compiled kernel or

system-tuned

– Can general more efficient code than one general
kernel

System Boot
• When power initialized on system, execution starts at a fixed

memory location
– Firmware ROM used to hold initial boot code

• Operating system must be made available to hardware so
hardware can start it
– Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts itEEPROM locates the kernel, loads it into memory, and starts it

– Sometimes two-step process where boot block at fixed location
loaded by ROM code, which loads bootstrap loader from disk

• Common bootstrap loader, GRUB, allows selection of kernel
from multiple disks, versions, kernel options

• Kernel loads and system is then running

