NELL UNIVERSITY

Computer Science
CSCI 315 Operating Systems Design

Operating Systems Structures

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook
authors Silberschatz, Galvin, and Gagne

CSCI 315 Operating Systems Design

Operating System Services

 One set of services for users

* The other set of services for system
operations

CSCI 315 Operating Systems Design

User Services

e One set for the users:

User interface - Almost all operating systems have a user interface
(UI).
» Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

Program execution - The system must be able to load a program
into memory and to run that program

I/O operations - A running program may require 1/0O, which may
involve a file or an I/O device

File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and
delete them, search them, list file Information, permission
management.

Communications — Processes may exchange information, on the
same computer or between computers over a network

Error detection and handling — Deal with errors

System Operation Services

* Another set of OS functions exists for ensuring the
efficient operation of the system itself via resource
sharing

— Resource allocation - When multiple users or
multiple jobs running concurrently, resources must be
allocated to each of them

— Accounting - To keep track of which users use how
much and what kinds of computer resources

— Protection and security - The owners of information
stored in a multiuser or networked computer system
may want to control use of that information,
concurrent processes should not interfere with each
other

A View of Operating System
Services

user and other system programs

GUI batch command line

user interfaces

system calls
program I/O file I resource .
execution operations systems cammurtieation allocation Accieuming
error pro;?glon
detection _ security
services

operating system

hardware

User Operating System
Interface - CLI

 CLI orcommand line interpreter
allows direct command entry
— User types in a command as text

— The CLI (a.k.a. shell) takes the command
and sends it to the operating system kernel
for proper action and display the result of
the action to the user

e |t IS INnteractive.

Bourne Shell Command Interpreter

.

Bookmarks

Default
d -
MNew Info Close Execute
—| Default Default

PRG-Mnc-Pro:s~ phn% w
15:44 up 56 mins, 2 users, lood averaoges: 1.51 1.53 1.55

USER TTY FROM LOGINE TIDLE WHAT

pbg console - 14:34 B8 -

pbg =008 . 15:85 - W

PEG-Mac-Pro:~ pbag} iostat &

diskd diskl dis<1@ cou load average

KBS~ +tps MB/:= KB/ +ps MB/: KB/ tps MBS us =y id 1m Em 15m
33,75 343 11.30 B4.31 4 DB 88 .57 @ B8.82 11 5 84 1.51 1.53 1.65
5.27 328 1.65 a.e8 @ B.2e a.98 @ @.82 4 294 1.39 1.51 1.65
4,28 320 1,37 a.ea @ p.og a.48 @ 0.3 5 392 1.44 1.51 1.65

AL

PRG-Mnc-Prot~ phn% 1=

Applicazions Music WesEx

Applicacions {Parallels?) Pandc Packagzs coifig. log

Desktop Pictires getsmartdata. <xt

Documenzs Public im3

Downloads Sites log

Dropbox Thumks . db panda-dist

Library Virtial Machines praob . bxt

Movies Volumes scripts

PEG-Muc-Pru:~ pby$ pwd

flsersspbg

PEG-Mac-Pro:~ pbg} ping 122.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 dota bvtes

64 bytes from 192.168.1.1: icnp_seq=€ tt1=64 time=2 257 ms
64 bytes fFrom 102.168.1.1: 1icnp_scqgq-1 £tt1-64 time-1.262 ms
AL

--- 192, 168.1.1 ping statistics ---

2 packe:zs transmit:zed, 2 packets received, 8.0% packet loss
round-trip minfava/max/stodev = 1.264/1.760/2.257/0 498 ms
PEG-Mac-Pro:~ pbgt D

Other Types of User Interfaces

e Graphics User Interface (GUI)
— Touchscreen Interface

TR Serm
S £ e 4o o e
i s —— |
¢ o priges

System Calls

* Programming interface to the services
provided by the OS

« Typically written in a high-level language
(C or C++)

* Remember syscall in MIPS?

 Mostly accessed by programs via a high-
level Application Programming
Interface (API) rather than direct system
call use

Example of System Calls

MIPS system call:

i $vO, 1 # service 1 is print integer
add $a0, $t0, $zero # load value to register $a0
syscall

Example of System Call API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include =unistd.h>

ssize_t read(int fd, woid *buf, size_t count)
| | | | | |
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:

* int fd—the file descriptor to be read

® vyoid *buf —a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Example of Use System Call

#include <unistd.h>

[* read a entire file*/
char * read_file(int fd) {

char * content = malloc(MAXLEN + 1);
Ssize tsize read;

size_read = read(fd, content, MAXLEN)
contentfMAXLEN] = O;
return content;

APl — System Call — OS
Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
i open ()
: Implementation
i » of open ()
system call

return

System Call Parameter Passing

e Three general methods used to pass
parameters to the OS

— Simplest: pass the parameters in registers

— Parameters stored in a block, or table, in
memory, and address of block passed as a
parameter in a register

* This approach taken by Linux and Solaris

— Parameters placed, or pushed, onto the stack by
the program and popped off the stack by the
operating system

* Block and stack methods do not limit the number or
length of parameters being passed

Parameter Passing via Table

— X

X: parameters
for call

load address X

register

system call 13 —

/

use parameters
from table X

user program

-

operating system

}

code for
system
call 13

Types of System Calls

Process control

File management
Device management
Information maintenance
Communications
Protection

Examples of Windows and

Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()

Sleep()

CreatePipe()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()

write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown ()

C Library Calls

 |In addition to system calls, which map
directly to the services provided by an OS,
programming languages provide some
libraries.

 C has arich set of libraries, ranging from
Input/output to mathematics operations.

CSCI 315 Operating Systems Design 18

Standard C Library Example

e C program invoking printf() library call,
which calls write() system call

#include <stdio.h=
int main {)

{

—— printf ("Greetings"); |

return O;

}

user
Y

mode
4{ standard C library —
kernel

mode
write ()
Vo

4 write () N
'\\ system call Y,

_‘\‘x.__...___.-_ ___’_;_'J

System Programs

e System programs provide a convenient
environment for program development and
execution.

* Provide a convenient environment for program
development and execution

System Program Examples

Text editors such as vi and emacs

Compilers and interpreters such as Java,
Python, and C

Assembler, loader, linker
Web browsers, web servers
Command line interpreter (a.k.a. shells)

Operating System Structure

 General-purpose OS is very large program
e Various ways to structure one as follows

Simple Structure
e MS-DOS — written to

provide the most H
functionality in the ARpIEaIIoN Bogiam

least space y
.. . ident system program
— Not divided into s
modules ﬁ
_ Although MS-DOS MS-DOS device driversb
has some structure, p——
itS interfaces and ROM BIOS device drivers b

levels of functionality
are not well separated

UNIX

 UNIX — limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts
— Systems programs

— The kernel

« Consists of everything below the system-call interface
and above the physical hardware

* Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

Traditional UNIX System
Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

g i handling swapping block 1/O page replacement

N character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Layered Approach

 The operating system is . N
divided into a number of " et ptoriace
layers (levels), each built on / : \
top of lower layers. The / :
bottom layer (layer 0), is the

hardware; the highest (layer oo
N) is the user interface. | Qardware

« With modularity, layers are
selected such that each
uses functions (operations)
and services of only lower-
level layers

Microkernel System Structure

Moves as much from the kernel into user space

Mach example of microkernel
— Mac OS X kernel (Darwin) partly based on Mach

Communication takes place between user modules
using message passing

Benefits:

— Easier to extend a microkernel

— Easier to port the operating system to new architectures
— More reliable (less code is running in kernel mode)

— More secure

Detriments:

— Performance overhead of user space to kernel space
communication

Microkernel System Structure

Application
Program

File Device
System Driver

messages

Interprocess
Communication

messages

CPU
scheduling

memory
managment

microkernel 4

hardware

user
mode

kernel
mode

Modules

 Most modern operating systems
Implement loadable kernel modules
— Uses object-oriented approach
— Each core component is separate
— Each talks to the others over known interfaces
— Each is loadable as needed within the kernel

e Overall, similar to layers but with more
flexible
— Linux, Solaris, etc

Solaris Modular Approach

scheduling
device and classes
bus drivers
core Solaris
miscellaneous kernel loadable
modules system calls
STREAMS executable
modules formats

Hybrid Systems

 Most modern operating systems actually
not one pure model

— Hybrid combines multiple approaches to
address performance, security, usabllity
needs

— Linux and Solaris kernels in kernel address
space, so monolithic, plus modular for
dynamic loading of functionality

— Windows mostly monolithic, plus microkernel
for different subsystem personalities

Mac OS X Structure

raphical user interface
grap Aqua

application environments and services

kernel environment

BSD

Mach

I/O kit kernel extensions

10S
* Apple mobile OS for iPhone, iPad

— Structured on Mac OS X, added
functionality

— Does not run OS X applications natively Cocoa Touch
» Also runs on different CPU architecture
(ARM vs. Intel) Media Services
— Cocoa Touch Objective-C API for _
developing apps Core Services
- I\/Iec_ha services layer for graphics, Core OS
audio, video

— Core services provides cloud
computing, databases

— Core operating system, based on Mac
OS X kernel

Android

Developed by Open Handset Alliance (mostly
Google)

Similar stack to I0S

Based on Linux kernel but modified
— Provides process, memory, device-driver management
— Adds power management

Runtime environment includes core set of libraries
and Dalvik virtual machine

— Apps developed in Java plus Android API

» Java class files compiled to Java byte code then translated to
executable that runs in Dalvik VM

Libraries include frameworks for web browser
(webkit), database (SQLite), multimedia, smaller libc

Android Architecture

Application Framework

Libraries Android runtime
SQLite openGL Core Libraries
surface media Dalvik
manager framework . .
virtual machine
webkit libc

Performance Tuning

 Improve

performance by
removing
bottlenecks

OS must provide
means of computing
and displaying
measures of system
behavior

For example, “top”
program or Windows
Task Manager

1yl 10, 5 10 doe

File ©Options Wiew Help

..............................

_PU Usage ZPU Usage Histor

PF Usage Page File Usage History

Tatals Phyysical Memary (K

Handlzs 12621 Total 20968616
Threads 563 Available 1391552
Processes 50 System Cache 15541584
Commit Charge (k) Kermel Memaory (k)

Total 642128 Total 115724
Lirnik 4036760 Paged 856360
Peal. al1216 Monpaged 33088

Processes: S0 ZPL Usage: 0% Commit Charge: 627M [3942M

DTrace

./all.d ‘pgrep xclock' XEventsQueued
m DTrace tool in Solaris, dtrace: script ’./all.d’ matched 52377 probes

FreeBSD, Mac OS X allows ¢ o ooon

0 —> XEwventsQueued u

live instrumentation on 0 -> _XEventsQueued v

. 0 -> XllTransBytesReadable U

prOdUCtIOI’I SyStemS 0 <— XllTransBytesReadable U

] . 0 -»> XllTransSocketBytesReadable U

B Probes fire when code is 0 <- XllTransSocketBytesreadable U
o : 0 —> ioctl

executed within a provider, et .

capturing state data and 0 —> getf | K

. . 0 -> set active fd K

sending it to consumers of 0 <~ set_active fd K

0 <— getf K

those prObeS 0 -> get udatamodel K

0 <- get udatamodel K

m Example of following 0 -> reliasef o K

0 -> clear_ active K

XEventsQueued system call 0 <~ clear active fd K

move from libc library to > cv_broadcast K

0 <— cv_broadcast K

kernel and back 0 <- releasef K

0 <— loctl K

0 <— loctl U

0 <— XEventsQueued U

0 «- XEventsQueued u

DTrace

m DTrace code to record

amount of time each # dtrace -s sched.d

process with UserID 101 is Jn‘:i(i:'_race: script "sched.d” matched 6 probes
in running mode (on CPU) gnome-settings-d 142354
- gnome-vfs-daemon 158243
in nanoseconds Sndm 189804
wnck-applet 200030
hed: : : an= gnome-panel 277864
schied: ::onmcpl clock-applet 374916
}Llld == 101 mapping-daemon 385475
self->ts = timestamp; Xscreensaver 514177
} metacity 539281
Xorg 2579646
sched: : :of f-cpu gnome-terminal 5007269
self->ts mixer applet2 7388447
java 10769137

@time [execname] = sum(timestamp - self->ts);
self->ts = 0;

}

Figure 2.21 Output of the D code.

Operating System
Generation

* Operating systems are designed to run on
any of a class of machines; the system must
be configured for each specific computer site

« SYSGEN program obtains information
concerning the specific configuration of the
hardware system

— Used to build system-specific compiled kernel or
system-tuned

— Can general more efficient code than one general
kernel

System Boot

When power initialized on system, execution starts at a fixed
memory location

— Firmware ROM used to hold initial boot code
Operating system must be made available to hardware so
hardware can start it

— Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

— Sometimes two-step process where boot block at fixed location
loaded by ROM code, which loads bootstrap loader from disk

Common bootstrap loader, GRUB, allows selection of kernel
from multiple disks, versions, kernel options

Kernel loads and system is then running

