
CSCI 315 Operating Systems Design 1

Process and Thread Signals

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook authors
Silberschatz, Galvin, and Gagne, as well as the tutorial by Blaise Barney from Lawrence Livermore National Lab

https://computing.llnl.gov/tutorials/pthreads/

Signals
• Signals are used in UNIX systems to notify

a process that a particular event has
occurred, another mechanism of process
communication.

• A signal is a piece of data deposited by the
operating system
– in a particular part in the system, e.g., a special

purpose register, or a special area of memory
– at the request of a process (user or system) to

notify something of another process

Types of Unix Signals

• There are over 20 different types of Unix signals,
some commonly used ones:
– SIGALRM: send an alarm to a process, e.g., timer is up

– SIGINT: inform the process that the user wants an
interrupt, e.g., through Ctrl-C

– SIGKILL: stop the process right away (kill)

– SIGSEGV: inform the process that there is a virtual
memory access violation (segmentation fault!)

http://en.wikipedia.org/wiki/Unix_signal

http://en.wikipedia.org/wiki/Unix_signal

Signal Handling
• A signal handler is a program to process signals

1. default
2. user-defined

• Every signal has default handler that kernel runs
when handling signal
– User-defined signal handler can override

default
– For single-threaded, signal delivered to process

Signal Handling with Threads
• Where should a signal be delivered for multi-

threaded?
– Deliver the signal to the thread to which the

signal applies
– Deliver the signal to every thread in the process
– Deliver the signal to certain threads in the

process
– Assign a specific thread to receive all signals for

the process

A Simple Example (main())
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <time.h>
time_t curtime;
int main(int argc, char *args[]) {
 int seconds;
 void sigcatch();
 if (argc != 2) {
 fprintf(stderr, "usage: %s num-sec\n", args[0]);
 exit(1);
 }
 seconds = atoi(args[1]);
 time(&curtime);
 printf("Started the timer:\n%s", ctime(&curtime));
 alarm(seconds);
 signal(SIGALRM,sigcatch);
 while(1); // busy waiting
}

A Simple Example (handler())
void sigcatch() {
 time(&curtime);
 printf("Caught alarm at:\n%s",ctime(&curtime));
 exit(1);
}

[xmeng@polaris code]$./a.out 2
Started the timer:
Wed Sep 18 11:16:03 2013
Caught alarm at:
Wed Sep 18 11:16:05 2013
[xmeng@polaris code]$

Program asks for a 2-second timer

Timer started

Timer expired

	Process and Thread Signals
	Signals
	Types of Unix Signals
	Signal Handling
	Signal Handling with Threads
	A Simple Example (main())
	A Simple Example (handler())

