
CSCI 315 Operating Systems Design 1 

Thread Fundamentals 

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook authors 
Silberschatz, Galvin, and Gagne, as well as the tutorial  by Blaise Barney from Lawrence Livermore National Lab 

https://computing.llnl.gov/tutorials/pthreads/


A Different Model for Process 
Communication 

• We discussed two forms of IPC 
– Shared memory and message passing 

• In message passing, the communicating 
processes are running in different context, thus 
passing information is slower; 

• In shared memory, IPC is faster. However, we 
need to set up the shared memory. 

• In this segment, we explore a different model for 
processes to communicate with shared memory, 
that is, using threads. 



•Shared code 
•Shared data 
•Shared heap 
•Independent PC 
•Independent registers 

 

What Is A Thread? 
A thread is a light-weight process. 

Compared to: a process is a program in execution. 

In memory, just like processes 



Process and Thread 

code 

data 

heap 

Stack 
PC 
Reg’s 

shared 

Stack 
PC 
Reg’s 

Stack 
PC 
Reg’s 

per- thread 

Thread 1 Thread 2 Thread 3 

A process 

Example: A process that contains three threads. 
A traditional process can be considered as a process 
with a single thread. 



Why Threads? 

• Responsiveness: multiple threads can be executed in 
parallel, reducing the completion time needed for a 
problem 

• Resource sharing:  multiple threads have access to 
the same data, sharing made easier 

• Economy: creating process (allocating memory and 
other resources) is costly. For the same number of 
execution units, threads are less expensive 

• Scalability: thread model can be easily scaled up 



POSIX Threads 

• While threads can be implemented in many 
different ways, the POSIX thread is a popular 
and effective implementation of threads on 
UNIX-like system 

• POSIX: Potable Operating Systems Interface 



9/16/2013 CSCI 315 Operating Systems Design 

A Simple, Complete Thread Example 
 
/* gcc thisfile.c -lpthread */ 
#include <stdio.h> 
#include <pthread.h> 
 
#define NUM_THREADS 5 
#define SLEEP_TIME  3 
void *sleeping(void *);   /* thread routine */ 
 
int  main(int argc, char *argv[]) { 
 
  int i; 
  pthread_t tid[NUM_THREADS];      /* array of thread IDs */ 
 
  for ( i = 0; i < NUM_THREADS; i++) 
    pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME); 
 
  for ( i = 0; i < NUM_THREADS; i++) 
    pthread_join(tid[i], NULL); 
  printf("main() reporting that all %d threads have terminated\n", i); 
  return (0); 
}  /* main */ 
 

http://www.eg.bucknell.edu/~cs315/Fall13/code/thread/trd-sleep.c 
 

http://www.eg.bucknell.edu/~cs315/Fall13/code/thread/trd-sleep.c


9/16/2013 CSCI 315 Operating Systems Design 8 

The Thread Work: sleeping() 
 
void * sleeping(void *arg)   { 
 
  int sleep_time = (int)arg; 
  printf("thread %ld sleeping %d seconds ...\n", pthread_self(), 

sleep_time); 
  sleep(sleep_time); 
  printf("\nthread %ld awakening\n", pthread_self()); 
  return (NULL); 
} 



9/16/2013 CSCI 315 Operating Systems Design 9 

Compile and Execute the Program 
[xmeng@linuxremote]$ gcc -o thread-sleep trd-sleep.c –lpthread 
[xmeng@linuxremote]$ ./thread-sleep 
thread 140550497642240 sleeping 3 seconds ... 
thread 140550518621952 sleeping 3 seconds ... 
thread 140550508132096 sleeping 3 seconds ... 
thread 140550476662528 sleeping 3 seconds ... 
thread 140550487152384 sleeping 3 seconds ... 
thread 140550497642240 awakening 
thread 140550518621952 awakening 
thread 140550508132096 awakening 
thread 140550487152384 awakening 
thread 140550476662528 awakening 
main() reporting that all 5 threads have terminated 
[xmeng@linuxremote]$ 



Creating Threads 
#include <pthread.h> Including the pthread library headers 

     pthread_create(&tid[i],     NULL, sleeping, 
                     (void *)SLEEP_TIME); 

Creating threads Thread ID Thread attributes, NULL for now 

Name of thread  
worker function Pointer to the parameter 

block 

As soon as threads are created, they start to execute the worker function 



Joining Threads When Finishing 

pthread_join(tid[i], NULL); 

Function to join 
the threads 

ID of the thread 
expected to join 

Pointer to 
return parameters 

The second parameter is of the type void **ptr, which is 
an address to a pointer (pointer to a pointer). If it is used, 
usually it returns the exit status of the thread. 



Global Variables Among Threads 

• Global variables and data structures among 
threads are shared 

• They are in the “data” segment of the memory 

• In our example, the following are “global” that 
every thread sees and can access 

#define NUM_THREADS 5 
#define SLEEP_TIME  3 
void *sleeping(void *);   /* thread routine */ 



An Example of Shared Data 
#include <stdio.h> 
#include <pthread.h> 
#define NUM_THREADS  5 
void *work(void *);   /* thread routine */ 
int v = 0;  /* global variable, shared */ 
int  main(int argc, char *argv[]) {   
 int i;   
 pthread_t tid[NUM_THREADS];      /* array of thread IDs */   
 for ( i = 0; i < NUM_THREADS; i++)     
  pthread_create(&tid[i], NULL, work, NULL);   
 for ( i = 0; i < NUM_THREADS; i++)     
  pthread_join(tid[i], NULL);   
 printf("main() reporting that all %d threads have terminated\n", i);   
 printf("v should be %d, it is %d\n", NUM_THREADS, v);   
 return (0); 
}  /* main */ 



The Worker Function and Result 
void * work(void *arg)   { 
 v ++;    // ‘v’ is a global variable 
 return (NULL); 
} 

[xmeng@polaris thread]$ ./trd-share 
main() reporting that all 5 threads have terminated 
v should be 5, it is 5 
[xmeng@polaris thread]$  

Everything seems working fine. However if one increases the  
number of threads to a larger value, e.g., 5000, we may see  
something incorrect. 

http://www.eg.bucknell.edu/~cs315/Fall13/code/thread/trd-share.c 
 

http://www.eg.bucknell.edu/~cs315/Fall13/code/thread/trd-share.c


There May Be A Problem … 
#define  NUM_THREADS  5000   // everything else is the same 

[xmeng@polaris thread]$ ./trd-share 
main() reporting that all 5000 threads have terminated 
v should be 5000, it is 4998 
[xmeng@polaris thread]$  

Who stole the two counts from me?!! 


	Thread Fundamentals
	A Different Model for Process Communication
	What Is A Thread?
	Process and Thread
	Why Threads?
	POSIX Threads
	A Simple, Complete Thread Example
	The Thread Work: sleeping()
	Compile and Execute the Program
	Creating Threads
	Joining Threads When Finishing
	Global Variables Among Threads
	An Example of Shared Data
	The Worker Function and Result
	There May Be A Problem …

