
1

CSCI 315 Operating Systems Design 1

Process Synchronization

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook
authors Silberschatz, Galvin, and Gagne

Two Examples

• Multiple threads increment a shared
variable leading to incorrect results
– http://www.eg.bucknell.edu/~cs315/Fall13/cod

e/thread/trd-share ce/thread/trd share.c

• Multiple threads share a string buffer
(read/write) leading to incorrect results
– http://www.eg.bucknell.edu/~cs315/Fall13/cod

e/synch/consumer-producer-wosynch.c

CSCI 315 Operating Systems Design 2

Process Synchronization

• Processes work together to solve
problems

• They need to collaborate with each other
in order to accomplish a taskin order to accomplish a task

• Without collaboration, things can go wrong

CSCI 315 Operating Systems Design 3

Race Condition

A race condition is where the outcome of the
execution depends on the particular order in which
the threads[note] access the shared data.

Note: in this context, we will use the term process and thread interchangeably.

CSCI 315 Operating Systems Design 4

We have seen this phenomenon in our thread discussion

[xmeng@polaris thread]$./trd-share

main() reporting that all 5000 threads have terminated

v should be 5000, it is 4998

[xmeng@polaris thread]$

p g y

The Synchronization Problem

• Concurrent access to shared data may
result in data inconsistency.

CSCI 315 Operating Systems Design 5

• Maintaining data consistency requires
mechanisms to ensure the “orderly”
execution of cooperating processes.

Producer-Consumer
Race Condition

The Producer does:

while (1) {

while (count == BUFFER_SIZE)

; // do nothing

CSCI 315 Operating Systems Design 6

; // do nothing

// produce an item and put in nextProduced

buffer[in] = make_item();

in = (in + 1) % BUFFER_SIZE;

counter++;

}

2

Producer-Consumer
Race Condition

The Consumer does:

while (1) {

while (count == 0)

; // do nothing

CSCI 315 Operating Systems Design 7

; // do nothing

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

// consume the item

}

Producer-Consumer
Race Condition

• count++ could be implemented as
lw $t0, 0($s0) # load memory content at $s0 to $t0

addi $t0, $0, 1 # increment $t0 by 1

sw $t0, 0($s0) # store content in $t0 to memory at $s0

• count-- could be implemented as
lw $t1, 0($s0) # load memory content at $s0 to $t1

CSCI 315 Operating Systems Design 8

subi $t1, $0, 1 # decrement $t1 by 1

sw $t1, 0($s0) # store content in $t1 to memory at $s0

• Consider this execution interleaving when count == 5:
Step 0: producer execute lw $t0, 0($s0) # $t0 == 5
Step 1: producer execute addi $t0, $0, 1 # $t0 == 6
Step 2: consumer execute lw $t1, 0($s0) # $t1 == 5
Step 3: consumer execute subi $t1, $0, 1 # $t1 == 4
Step 4: producer execute sw $t0, 0($s0) # count == 6
Step 5: consumer execute sw $t1, 0($s0) # count == 4

The Critical-Section Problem

• It turns out that the consumer-producer problem
is one particular problem in a general category
of problems called the critical-section problem:
– A collection of collaborating processes, each of which

has a segment of code (critical section) that accesses
some common data. To ensure the correctness of the
result, only one process can enter its critical section
to access the shared data at any time.

– The critical-section problem is to design a protocol
that ensures the correctness of the result under such
a condition.

CSCI 315 Operating Systems Design 9

The Critical-Section Problem
Solution Requirements

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical

CSCI 315 Operating Systems Design 10

p
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is granted. (Assume that each process
executes at a nonzero speed. No assumption concerning
relative speed of the N processes.)

Typical Process Pi

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

CSCI 315 Operating Systems Design 11

OpenMP Code Example
#include <omp.h>

#include <stdio.h>

int main(int argc, char *argv[]) {

/* sequential code */

int v = 0;

#pragma omp parallel shared(v)

{

CSCI 315 Operating Systems Design 12

{

#pragma omp critical (addv)

{

v ++;

}

printf("I am a parallel region\n");

}

/* sequential code */

printf("value of v = %d\n", v);

return 0;

}

3

How To Synchronize
Processes?

• OpenMP provides a nice solution for
programmers.

• But how are they implemented? How do
we approach a synchronization problem inwe approach a synchronization problem in
general?

• There could be hardware solution to this
problem as well. We are concentrating on
software solutions for now.

CSCI 315 Operating Systems Design 13

Peterson’s Solution
for a 2-process case

int turn;

boolean flag[2];

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

Shared
variables

CSCI 315 Operating Systems Design 14

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

Peterson’s Solution
Process 0

int turn;

boolean flag[2];

do {

flag[0] = TRUE;

turn = 1;

while (flag[1] && turn == 1);

Shared
variables

CSCI 315 Operating Systems Design 15

critical section

flag[0] = FALSE;

remainder section

} while (TRUE);

Peterson’s Solution
Process 1

int turn;

boolean flag[2];

do {

flag[1] = TRUE;

turn = 0;

while (flag[0] && turn == 0);

Shared
variables

CSCI 315 Operating Systems Design 16

critical section

flag[1] = FALSE;

remainder section

} while (TRUE);

Limitation to Peterson’s Solution

• Strict order of execution

• Variable updates (turn and flag) could still
be problematic

CSCI 315 Operating Systems Design 17

