
1

CSCI 315 Operating Systems Design 1

Semaphores and Monitors

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook
authors Silberschatz, Galvin, and Gagne

How Are We Meeting
The Requirements?

Do the solutions of TestAndSet()
and Swap() provide:

1.Mutual exclusion?

2.Progress?

3.Bounded waiting?

CSCI 315 Operating Systems Design 2

Any Issues with Above
Solutions?

Busy Waiting!

CSCI 315 Operating Systems Design 3

y g

How to avoid busy waiting?

Any Issues with Above
Solutions?

Wait is not bounded!

CSCI 315 Operating Systems Design 4

How to avoid unlimited waiting?

Semaphores
• Semaphore – an abstract data type consisting of two parts, a

counter and a queue, working together to provide atomic operations

• Counting semaphore – in which the counter value can range over
an unrestricted domain.

• Binary semaphore – in which the counter value can range only
between 0 and 1; can be simpler to implement (also known as
mutex locks)

CSCI 315 Operating Systems Design 5

mutex locks).

• Note that one can implement a binary semaphore S as a counting
semaphore.

• Provides mutual exclusion:

semaphore S(1); // initialized to 1

wait(S); // or acquire(S) or P(S)

criticalSection();

signal(S); // or release(S) or V(P)

Semaphore Implementation

typedef struct {
int value;
struct process *waiting_list;

} semaphore;

CSCI 315 Operating Systems Design 6

Operations on a semaphore must be atomic!

The value of the variable “value” represents the number
of resources available when positive, and the number
of waiting processes for this resource when negative,
though we could consistently view it as the number of
resource available even if the value is negative.

2

Semaphore Implementation

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add process P to
S->waiting_list

bl k(P)

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P
from S->waiting_list

wakeup(P);

CSCI 315 Operating Systems Design 7

block(P);
}

}

wakeup(P);
}

}

/* Process P requests the semaphore operation, wait() or signal(). */
/* wait() and signal() are atomic operations that are non-breakable */

A Different View

wait(semaphore *S) {
if (S->value > 0)

S->value --;
else {

add process P to
S > iti li t

signal(semaphore *S) {
if (isEmpty(S->waiting_list) == False {

remove a process P
from S->waiting_list

wakeup(P);
} l

CSCI 315 Operating Systems Design 8

S->waiting_list
block(P);

}
}

} else
S->value ++;

}

/* Process P requests the semaphore operation, wait() or signal(). */
/* wait() and signal() are atomic operations that are non-breakable */
/* Semaphores on Linux follow this logic */

Semaphore Implementation

• Must guarantee that no two processes can be inside
signal() or wait() on the same semaphore at the
same time.

• The implementation becomes the critical section

CSCI 315 Operating Systems Design 9

• The implementation becomes the critical section
problem:
– Could now have busy waiting in critical section

implementation
• But implementation code is short

• Little busy waiting if critical section rarely occupied

– Applications may spend lots of time in critical section

Linux Semaphore Example

sem_t lock;
sem_init(&lock, 0, 1); // 0 means no share, 1 is the initial lock value
…
sem_wait(&lock); // allows only one process to update v at a time
v ++; // CR

CSCI 315 Operating Systems Design 10

v ++; // CR
sem_post(&lock); // release the lock so others can come into the CR
printf(“lock value in work() is %d\n”, lock_value);

See complete program at
http://www.eg.bucknell.edu/~cs315/Fall13/code/synch/trd-share-v3.c

Common Linux Semaphore
Functions

sem_t lock // Declare ‘lock’ as a variable of semaphore type sem_t

sem_init() // Initialize the semaphore value with a non-negative int

sem wait() // The logic of wait()

CSCI 315 Operating Systems Design 11

sem_wait() // The logic of wait()

sem_post() // The logic of signal()

sem_getvalue() // Retrieve the current value of a semaphore

Use Linux man pages to find out the meaning!

Try the Program with Various
Settings

• Lock value 1?

• Lock value 5?

• Lock value 0?

• Lock value -1?

• post() without wait()

• wait() without post()?

CSCI 315 Operating Systems Design 12

3

Cases To Consider
• Let S and Q be two semaphores initialized to 1

P0 P1

acquire(S); acquire(Q);
acquire(Q); acquire(S);
. .
. .

CSCI 315 Operating Systems Design 13

. .
release(S); release(Q);
release(Q); release(S);

• Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes.

• Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well,
that is almost always true). We should want a solution that reduces risk.

• The solution can take the shape of high-level language constructs, as the
monitor type:

A procedure can access only local
variables defined within the monitor.

There cannot be concurrent access to

monitor mName {
// shared variables declaration
procedure P1 (…) {

CSCI 315 Operating Systems Design 14

There cannot be concurrent access to
procedures within the monitor (only one
process/thread can be active in the
monitor at any given time).

Condition variables: queues are
associated with variables. Primitives for
synchronization are wait and signal.

procedure P1 (…) {
…

}
procedure Pn (…) {

…
}
init code (…) {
….

}
}

Monitor

CSCI 315 Operating Systems Design 15

Java Monitor

• Java associates a monitor with each
object

• The monitor enforces the mutual exclusion
access to the methods with the
synchronized designation in the object

• Note: mutual exclusion only, the other two
criteria are not considered here. One
needs to use other mechanism in Java to
enforce the other two criteria.

CSCI 315 Operating Systems Design 16

How Java Monitor Works

• When a thread calls a synchronized
method on an object, the JVM checks the
monitor for that object

if the monitor is unowned ownership is– if the monitor is unowned, ownership is
assigned to the calling thread, which is then
allowed to proceed with the method call

– if the monitor is owned by another thread, the
calling thread will be put on hold until the
monitor becomes available

CSCI 315 Operating Systems Design 17

Java Synchronized Method
Example

class Counter {

private int count;

Counter(int init) { this.count = init; }

CSCI 315 Operating Systems Design 18

public synchronized void increment() {
this.count ++;

}
}

See code at http://www.eg.bucknell.edu/~cs315/Fall13/code/synch/CounterDemo.java

4

Compile and Execute the Program
[xmeng@linuxremote1 sync]$ javac CounterDemo.java

[xmeng@linuxremote1 sync]$ java CounterDemo

value after 500

[xmeng@linuxremote1 sync]$

…..

// when commenting out the “synchronized” keyword

9/29/2013 CSCI 315 Operating Systems Design 19

[xmeng@linuxremote1 sync]$ javac CounterDemo.java

[xmeng@linuxremote1 sync]$ java CounterDemo

value after 479

[xmeng@linuxremote1 sync]$ java CounterDemo

value after 454

[xmeng@linuxremote1 sync]$

