
1

CSCI 315 Operating Systems Design 1

Classic Synchronization Problems

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook
authors Silberschatz, Galvin, and Gagne

Classic Synchronization
Problems

• The Bounded-Buffer Problem

• The Readers-Writers Problem

• The Dinning-Philosophers Problem

CSCI 315 Operating Systems Design 2

The Bounded-Buffer Problem
Producers Consumers

CSCI 315 Operating Systems Design 3

When the buffer is empty,
the consumers have to wait.

The Bounded-Buffer Problem
Producers Consumers

CSCI 315 Operating Systems Design 4

When the buffer is full,
the producers have to wait.

In addition, producers and consumers
can access the buffer only one at a time.

The Bounded-Buffer Problem

Question: How do we provide a mechanism to
guarantee that only one producer or one consumer can
have access to the buffer?

Question: How do we provide a mechanism that the
d t t i t th b ff h f ll?

CSCI 315 Operating Systems Design 5

producers cannot put more into the buffer when full?

Question: How do we provide a mechanism that the
consumers cannot take anything from an empty buffer?

The Readers-Writers Problem

Shared document

Writers Readers

CSCI 315 Operating Systems Design 6

Shared document

Only one writer can write at a time;
multiple readers can access at

the same time when no writer is in.

2

The Readers-Writers Problem

Shared document

Writers Readers

CSCI 315 Operating Systems Design 7

Shared document

When one write is using the buffer,
no one else can access it.

The Readers-Writers Problem

Shared document

Writers Readers

CSCI 315 Operating Systems Design 8

Shared document

Multiple readers can access the buffer
at the same time,

no writers can when readers are in.

The Readers-Writers Problem

Question: How do we provide a mechanism to
guarantee that only one writer can access to the
buffer?

Question: How do we provide a mechanism that
ll lti l d th b ff h

CSCI 315 Operating Systems Design 9

allows multiple readers access the buffer when no
writer is in?

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 10

The Dining-Philosophers Problem

thinking

CSCI 315 Operating Systems Design 11

hungry eating

State diagram for a philosopher

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 12

3

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 13

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 14

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 15

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 16

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 17

Limit to Concurrency

What is the maximum number of
philosophers that can be eating at any p p g y
point in time?

CSCI 315 Operating Systems Design 18

4

Philosopher’s Behavior

• Grab chopstick on left

• Grab chopstick on right

• Eat

• Put down chopstick on right

• Put down chopstick on left

CSCI 315 Operating Systems Design 19

How well does this work?

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 20

The Dining-Philosophers Problem

Question: How many philosophers can eat at once?
How can we generalize this answer for n philosophers
and n chopsticks?

Question: What happens if the programmer initializes
th h i tl ? (S t h

CSCI 315 Operating Systems Design 21

the semaphores incorrectly? (Say, two semaphores
start out a zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?

Overall Questions

Question: What are the similarities
among these problems?

CSCI 315 Operating Systems Design 22

Question: What are the differences?

Make sure to read the relevant
sections of the textbook and

understand the solutions there.

A Closer Look at the
Readers/Writers Problem

• From a writer’s point of view, exclusive
access is needed. That is at any moment,
only one writer is allowed (no other writers,
no readers) in the CRno readers) in the CR.

• From a reader’s point of view, if a writer is
in the CR, no readers can access the CR;
if a reader (or no one) is in CR, many
readers can get into the CR.

CSCI 315 Operating Systems Design 23

Writer’s Algorithm

do {
wait(&rw_mutex); // request exclusive access

// CR: writing data

CSCI 315 Operating Systems Design 24

signal(&rw_mutex); // release exclusive access
} while (true)

5

Reader’s Algorithm

do {
wait(&mutex); // request exclusive access to read_count
read_count ++; // CR among readers
if (read_count == 1) // first reader locks the writer(s) out

wait(&rw_mutex); // request exclusive access to shared data

// CR di d t

CSCI 315 Operating Systems Design 25

// CR: reading data

wait(&mutex); // request exclusive access to read_count
read_count --; // CR among readers
if (read_count == 0) // last reader releases the lock

signal(&rw_mutex);
signal(&rw_mutex); // release exclusive access to CR

} while (true)

