NELL UNIVERSITY

Computer Science

CSCI 315 Operating Systems Design

Classic Synchronization Problems

Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook
authors Silberschatz, Galvin, and Gagne

CSCI 315 Operating Systems Design

Classic Synchronization
Problems
* The Bounded-Buffer Problem
« The Readers-Writers Problem
» The Dinning-Philosophers Problem

CSCI 315 Operating Systems Design

The Bounded-Buffer Problem

Producers Consumers

o\ @

S R [y
AN

When the buffer is empty, .
the consumers have to wait.

CSCI 315 Operating Systems Design 3

The Bounded-Buffer Problem

Producers Consumers

QE“\ //..
) OO
N

When the buffer is full, .
the producers have to wait.
In addition, producers and consumers
can access the buffer only one at a time.

CSCI 315 Operating Systems Design

The Bounded-Buffer Problem

Question: How do we provide a mechanism to
guarantee that only one producer or one consumer can
have access to the buffer?

Question: How do we provide a mechanism that the
producers cannot put more into the buffer when full?

Question: How do we provide a mechanism that the
consumers cannot take anything from an empty buffer?

CSClI 315 Operating Systems Design 5

The Readers-Writers Problem

Writers Readers
BN O
Q_ —
‘ Shared document ‘ — ®
@— —
Only one writer can write at a time; ‘

multiple readers can access at
the same time when no writer is in.

CSCI 315 Operating Systems Design




The Readers-Writers Problem

Writers Readers

SN

®
Sharet document ‘ —
o— [

g

When one write is using the buffer, .
no one else can access it.

CSCI 315 Operating Systems Design

The Readers-Writers Problem

Writers Readers

®

e\ _

o— ‘ SQec@cu@t ‘ — ®

@
[

Multiple readers can access the buffer
at the same time,
no writers can when readers are in.

CSCI 315 Operating Systems Design

The Readers-Writers Problem

Question: How do we provide a mechanism to
guarantee that only one writer can access to the
buffer?

Question: How do we provide a mechanism that
allows multiple readers access the buffer when no
writer is in?

CSCI 315 Operating Systems Design 9

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 10

The Dining-Philosophers Problem

& |G
@“ 20 %

\
State diagram for a philosopher \w

CSClI 315 Operating Systems Design 1

The Dining-Philosophers Problem

WNORW)

CSCI 315 Operating Systems Design 12




The Dining-Philosophers Problem

GNORW)
© ©
O o

®Q®

CSCI 315 Operating Systems Design 13

The Dining-Philosophers Problem

@O

CSCI 315 Operating Systems Design 14

The Dining-Philosophers Problem

®o0O
O ©

® o
“@

CSCI 315 Operating Systems Design 15

The Dining-Philosophers Problem

| _NORW
© ©

e o
o

CSCI 315 Operating Systems Design 16

The Dining-Philosophers Problem

O NOR(Y

CSClI 315 Operating Systems Design 17

Limit to Concurrency

What is the maximum number of
philosophers that can be eating at any
point in time?

CSCI 315 Operating Systems Design 18




Philosopher’s Behavior

» Grab chopstick on left

» Grab chopstick on right

» Eat

» Put down chopstick on right
Put down chopstick on left

How well does this work?

CSCI 315 Operating Systems Design 19

The Dining-Philosophers Problem

_NON

CSCI 315 Operating Systems Design 20

The Dining-Philosophers Problem

Question: How many philosophers can eat at once?
How can we generalize this answer for n philosophers
and n chopsticks?

Question: What happens if the programmer initializes
the semaphores incorrectly? (Say, two semaphores
start out a zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?

CSCI 315 Operating Systems Design 21

Overall Questions

Question: What are the similarities
among these problems?

\Question: What are the differences?

Make sure to read the relevant
sections of the textbook and
understand the solutions there.

A Closer Look at the
Readers/Writers Problem

» From a writer’s point of view, exclusive
access is needed. That is at any moment,
only one writer is allowed (no other writers,
no readers) in the CR.

« From a reader’s point of view, if a writer is
in the CR, no readers can access the CR;
if a reader (or no one) is in CR, many
readers can get into the CR.

CSCI 315 Operating Systems Design 23

CSCI 315 Operating Systems Design 22
. y .
Writer’'s Algorithm
do{
wait(&rw_mutex); Il request exclusive access

/I CR: writing data

signal(&w_mutex); Il release exclusive access
} while (true)

CSCI 315 Operating Systems Design 24




Reader’s Algorithm

do \
wait(&mutex); Il request exclusive access to read_count
read_count ++; /I CR among readers
if (read_count == 1) Il first reader locks the writer(s) out
wait(&w_mutex); /I request exclusive access to shared data

Il CR: reading data

wait(&mutex); /I request exclusive access to read_count

read_count --; /I CR among readers

if (read_count == 0) Il last reader releases the lock
signal(&w_mutex);

signal(&w_mutex); /l release exclusive access to CR

@ile (true) /

CSCI 315 Operating Systems Design 25




