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Classic Synchronization
Problems
* The Bounded-Buffer Problem
« The Readers-Writers Problem
» The Dinning-Philosophers Problem
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The Bounded-Buffer Problem
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When the buffer is empty, .
the consumers have to wait.
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The Bounded-Buffer Problem
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When the buffer is full, .
the producers have to wait.
In addition, producers and consumers
can access the buffer only one at a time.
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The Bounded-Buffer Problem

Question: How do we provide a mechanism to
guarantee that only one producer or one consumer can
have access to the buffer?

Question: How do we provide a mechanism that the
producers cannot put more into the buffer when full?

Question: How do we provide a mechanism that the
consumers cannot take anything from an empty buffer?
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The Readers-Writers Problem

Writers Readers
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Only one writer can write at a time; ‘

multiple readers can access at
the same time when no writer is in.
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The Readers-Writers Problem

Writers Readers
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When one write is using the buffer, .
no one else can access it.
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The Readers-Writers Problem
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Multiple readers can access the buffer
at the same time,
no writers can when readers are in.
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The Readers-Writers Problem

Question: How do we provide a mechanism to
guarantee that only one writer can access to the
buffer?

Question: How do we provide a mechanism that
allows multiple readers access the buffer when no
writer is in?
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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Limit to Concurrency

What is the maximum number of
philosophers that can be eating at any
point in time?
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Philosopher’s Behavior

» Grab chopstick on left

» Grab chopstick on right

» Eat

» Put down chopstick on right
Put down chopstick on left

How well does this work?
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem

Question: How many philosophers can eat at once?
How can we generalize this answer for n philosophers
and n chopsticks?

Question: What happens if the programmer initializes
the semaphores incorrectly? (Say, two semaphores
start out a zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?
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Overall Questions

Question: What are the similarities
among these problems?

\Question: What are the differences?

Make sure to read the relevant
sections of the textbook and
understand the solutions there.

A Closer Look at the
Readers/Writers Problem

» From a writer’s point of view, exclusive
access is needed. That is at any moment,
only one writer is allowed (no other writers,
no readers) in the CR.

« From a reader’s point of view, if a writer is
in the CR, no readers can access the CR;
if a reader (or no one) is in CR, many
readers can get into the CR.

CSCI 315 Operating Systems Design 23

CSCI 315 Operating Systems Design 22
. y .
Writer’'s Algorithm
do{
wait(&rw_mutex); Il request exclusive access

/I CR: writing data

signal(&w_mutex); Il release exclusive access
} while (true)
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Reader’s Algorithm

do \
wait(&mutex); Il request exclusive access to read_count
read_count ++; /I CR among readers
if (read_count == 1) Il first reader locks the writer(s) out
wait(&w_mutex); /I request exclusive access to shared data

Il CR: reading data

wait(&mutex); /I request exclusive access to read_count

read_count --; /I CR among readers

if (read_count == 0) Il last reader releases the lock
signal(&w_mutex);

signal(&w_mutex); /l release exclusive access to CR

@ile (true) /
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