
1

CSCI 315 Operating Systems Design 1

CPU Scheduling Algorithms

Notice: The slides for this lecture have been largely based on those from the course text Operating
Systems Concepts, 9th ed., by Silberschatz, Galvin, and Gagne. Many, if not all, the illustrations
contained in this presentation come from this source. Revised by X.M. from notes by Perrone.

Scheduling AlgorithmsScheduling Algorithms

CSCI 315 Operating Systems Design 2

Scheduling AlgorithmsScheduling Algorithms

First-Come, First-Served (FCFS)

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

CSCI 315 Operating Systems Design 3

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Issues with FCFS

Suppose that the processes arrive in the order

P2 , P3 , P1

• The Gantt chart for the schedule is:

P1P3P2

CSCI 315 Operating Systems Design 4

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case.

• Convoy effect: all process are stuck waiting until a long process terminates.

63 300

Shortest-Job-First (SJF)
• Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with
the shortest time.

• Two schemes:
– Nonpreemptive – once CPU given to a process it cannot be

preempted until completing its CPU burst.

CSCI 315 Operating Systems Design 5

– Preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process, preempt.
This scheme is know as the Shortest-Remaining-Time-First
(SRTF).

• SJF is optimal – gives minimum average waiting time
for a given set of processes.

Question: Is this practical? How can one determine the length of a CPU-burst?

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Non-Preemptive SJF

CSCI 315 Operating Systems Design 6

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

P1 P3 P2

73 160

P4

8 12

2

Preemptive SJF

Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

• SJF (preemptive)

CSCI 315 Operating Systems Design 7

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Determining Length of Next
CPU-Burst

• We can only estimate the length.

• This can be done by using the length of previous
CPU bursts, using exponential averaging:

CSCI 315 Operating Systems Design 8

? of valuetheofeffect The4.

10 3.

 at timeburst CPU for the valuepredicted 2.

burst CPU oflenght actual 1.

n

nt

n

th
n

 nnn t 11

Prediction of the Length of the
Next CPU-Burst

CSCI 315 Operating Systems Design 9

The graph is shown when α is 0.5

Class Exercise

• Given the actual CPU bursts are 6, 4, 6, 4, 13,
13, 13, and the initial estimate of τ is 10 as in
previous slide, show the first three predictions
when α takes the value of
– 0.2

– 0.7

• When α is 0.2, estimates are 9.2, 8.16, 7.73

• When α is 0.7, estimates are 7.2, 4.96, 5.69

CSCI 315 Operating Systems Design 10

Priority Scheduling
• A priority number (integer) is associated with each process.

• The CPU is allocated to the process with the highest priority
(typically, smallest integer highest priority)
– Preemptive

– Nonpreemptive

CSCI 315 Operating Systems Design 11

– Nonpreemptive

• SJF is a priority scheduling where priority is the predicted next CPU-
burst time.

• Problem: Starvation – low priority processes may never execute.

• Solution: Aging – as time progresses increase the priority of the
process.

Process Priority in Linux
• Priority scheduling is commonly used in

production OSes such as Linux

• In Linux, the priority values range from -20
(most favorite) to 20 (least favorite)() ()

• Try ps al command on a Linux terminal

• We can run a CPU intensive job and use
the nice command to set its priority, or
renice command to change its priority.

CSCI 315 Operating Systems Design 12

3

[xmeng@polaris practice]$./a.out &
[xmeng@polaris lectures]$ ps l
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 5886 12939 11780 20 0 117528 2284 n_tty_ Ss+ pts/1 0:01 -bin/tcsh
0 5886 15993 11782 20 0 108128 1000 - R+ pts/0 0:00 ps l
0 5886 15994 12939 20 0 3920 340 hrtime S pts/1 0:00 ./a.out

[xmeng@polaris lectures]$ renice 10 15994
15994: old priority 0, new priority 10

[xmeng@polaris lectures]$ ps l
…

CSCI 315 Operating Systems Design 13

0 5886 15994 12939 30 10 3920 340 hrtime SN pts/1 0:00 ./a.out
…

Round Robin (RR)
• Each process gets a small unit of CPU time

(time quantum), usually 10-100 milliseconds.
After this time has elapsed, the process is
preempted and added to the end of the ready
queue.

CSCI 315 Operating Systems Design 14

• If there are n processes in the ready queue and
the time quantum is q, then each process gets
1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-
1)q time units.

RR with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

CSCI 315 Operating Systems Design 15

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Time Quantum and Context
Switch Time

CSCI 315 Operating Systems Design 16

Question: What influences the choice of value for the quantum?

Turnaround Time Varies with the
Time Quantum

CSCI 315 Operating Systems Design 17

Performance of RR

• Effects of the quantum length q:
– q large FIFO.

– q small q must be large with respect to
context switch, otherwise overhead is too
high

CSCI 315 Operating Systems Design 18

high.

– If q is extremely small, and we ignore the
context switch cost, the result is processor
sharing.

4

Multilevel Queue
• Ready queue is partitioned into separate queues:

– foreground (interactive)

– background (batch)

• Each queue has its own scheduling algorithm.
– foreground: RR

CSCI 315 Operating Systems Design 19

g

– background: FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

– Time slice – each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR.

– 20% to background in FCFS .

Multilevel Queue Scheduling

CSCI 315 Operating Systems Design 20

Multilevel Feedback Queue

• A process can move between the various queues; aging
can be implemented this way.

• Multilevel-feedback-queue scheduler defined by the
following parameters:

CSCI 315 Operating Systems Design 21

following parameters:
– number of queues,

– scheduling algorithms for each queue,

– method used to determine when to upgrade a process,

– method used to determine when to demote a process,

– method used to determine which queue a process will enter
when that process needs service.

Example of Multilevel
Feedback Queue

• Three queues:
– Q0 – time quantum 8 milliseconds (most favorite queue)

– Q1 – time quantum 16 milliseconds

– Q2 – FCFS (least favorite queue)

CSCI 315 Operating Systems Design 22

• Scheduling
– A new job enters queue Q0 which is served FCFS. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

– At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

Multilevel Feedback Queues

CSCI 315 Operating Systems Design 23

Linux Scheduling
• Linux maintains 140 run queues, one
for each priority level

• Two sets of queues,
• queues 0-99 for real time processes
• queues 100-139 for regular processes

CSCI 315 Operating Systems Design 24

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

• The priority values can be set by the
system call nice (2)

• only the super users can decrement
the nice values

• Different priority gives different CPU quanta

5

Determine Quantum Values
• Calculate quantum

• q = (140 − SP) × 20 if SP < 120
• q = (140 − SP) × 5 if SP ≥ 120
• where SP is the static priority

• Higher priority process get longer quanta

CSCI 315 Operating Systems Design 25

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

• Basic idea: important processes should run
longer
• Other mechanisms used for quick interactive
response

Typical Quantum Values

Static Pri Nice Quantum

Highest static 100 -20 800 ms

High 110 -10 600 ms

Normal 120 0 100 ms

CSCI 315 Operating Systems Design 26

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

Normal 120 0 100 ms

Low static 130 +10 50 ms

Lowest static 139 +20 5 ms

POSIX Thread Scheduling

• A process could contain multiple threads
or a single thread.

• POSIX thread scheduling defines scope of
thread schedulingthread scheduling.
– PTHREAD_SCOPE_SYSTEM : a thread

contends for CPU as if it were a process

– PTHREAD_SCOPE_PROCESS : all threads
in a process are grouped together to contend
for CPU

CSCI 315 Operating Systems Design 27

Scope Examples
PTHREAD_SCOPE_SYSTEM : If there is one process P1 with 10 threads
with scope PTHREAD_SCOPE_SYSTEM and a single threaded process P2,
P2 will get one time slice out of 11 and every thread in P1 will get one
time slice out of 11.

PTHREAD SCOPE PROCESS If th i ith 4

CSCI 315 Operating Systems Design 28

http://www.icir.org/gregor/tools/pthread-scheduling.html

PTHREAD_SCOPE_PROCESS : If there is a process with 4
PTHREAD_SCOPE_PROCESS threads and 4 PTHREAD_SCOPE_SYSTEM
threads, then each of the PTHREAD_SCOPE_SYSTEM threads will get a fifth
of the CPU and the other 4 PTHREAD_SCOPE_PROCESS threads will share
the remaining fifth of the CPU. The amount of CPU time for the four
PTHREAD_SCOPE_PROCESS threads is determined by thread scheduling
policy and priority.

Other Scheduling Parameters

• Other scheduling parameters can be set or
examined (get) using the pthread library
calls pthread_getschedparam() and
pthread setschedparam()pthread_setschedparam().

• The priority and scheduling policy are
meaningful only within the threads that are
in the same scope.

CSCI 315 Operating Systems Design 29

