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CPU Scheduling Algorithms 

Notice: The slides for this lecture have been largely based on those from the course text Operating 
Systems Concepts, 9th ed., by Silberschatz, Galvin, and Gagne. Many, if not all, the illustrations 
contained in this presentation come from this source. Revised by X.M. from notes by Perrone. 
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Scheduling Algorithms 
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First-Come, First-Served (FCFS) 

  Process Burst Time  
  P1 24 
   P2  3 
   P3  3  
 
• Suppose that the processes arrive in the order: P1 , P2 , P3   

The Gantt Chart for the schedule is: 
 
 
 
 
 

 
 
• Waiting time for P1  = 0; P2  = 24; P3 = 27 
• Average waiting time:  (0 + 24 + 27)/3 = 17 

P1 P2 P3 

24 27 30 0 
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Issues with FCFS 
Suppose that the processes arrive in the order 
   P2 , P3 , P1  
• The Gantt chart for the schedule is: 

 
 
 
 

 
• Waiting time for P1 = 6; P2 = 0; P3 = 3 
• Average waiting time:   (6 + 0 + 3)/3 = 3 
• Much better than previous case. 
• Convoy effect: all process are stuck waiting until a long process terminates.  

P1 P3 P2 

6 3 30 0 
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Shortest-Job-First (SJF) 
• Associate with each process the length of its next CPU 

burst.  Use these lengths to schedule the process with 
the shortest time. 

• Two schemes:  
– Nonpreemptive – once CPU given to a process it cannot be 

preempted until completing its CPU burst. 
– Preemptive – if a new process arrives with CPU burst length 

less than remaining time of current executing process, preempt.  
This scheme is know as the Shortest-Remaining-Time-First 
(SRTF). 

• SJF is optimal – gives minimum average waiting time 
for a given set of processes. 

Question: Is this practical? How can one determine the length of a CPU-burst? 
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  Process Arrival Time Burst Time 
  P1 0 7 
   P2 2 4 
   P3 4 1 
   P4 5 4 
 
• SJF (non-preemptive) 

 
 
 
 

 
• Average waiting time = (0 + 6 + 3 + 7)/4 = 4 

Non-Preemptive SJF 

P1 P3 P2 

7 3 16 0 

P4 

8 12 
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Preemptive SJF 
  Process Arrival Time Burst Time 
  P1 0 7 
   P2 2 4 
   P3 4 1 
   P4 5 4 
• SJF (preemptive) 

 
 
 
 

 
• Average waiting time = (9 + 1 + 0 +2)/4 = 3 

P1 P3 P2 

4 2 11 0 

P4 

5 7 

P2 P1 

16 
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Determining Length of Next 
CPU-Burst 

• We can only estimate the length. 
• This can be done by using the length of previous 

CPU bursts, using exponential averaging: 
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Prediction of the Length of the 
Next CPU-Burst 

The graph is shown when α is 0.5 



Class Exercise 

• Given the actual CPU bursts are 6, 4, 6, 4, 13, 
13, 13, and the initial estimate of τ is 10 as in 
previous slide, show the first three predictions 
when α takes the value of 
– 0.2 
– 0.7 

• When α is 0.2, estimates are 9.2, 8.16, 7.73 
• When α is 0.7, estimates are 7.2, 4.96, 5.69 
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Priority Scheduling 
• A priority number (integer) is associated with each process. 
 
• The CPU is allocated to the process with the highest priority 

(typically, smallest integer ≡ highest priority) 
– Preemptive 
– Nonpreemptive 
 

• SJF is a priority scheduling where priority is the predicted next CPU-
burst time. 

• Problem: Starvation – low priority processes may never execute. 
• Solution: Aging – as time progresses increase the priority of the 

process. 



Process Priority in Linux 
• Priority scheduling is commonly used in 

production OSes such as Linux 
• In Linux, the priority values range from -20 

(most favorite) to 20 (least favorite) 
• Try ps al command on a Linux terminal 
• We can run a CPU intensive job and use 

the nice command to set its priority, or 
renice command to change its priority. 
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[xmeng@polaris practice]$ ./a.out & 
[xmeng@polaris lectures]$ ps l 
F   UID   PID  PPID PRI  NI    VSZ   RSS WCHAN  STAT TTY        TIME COMMAND 
0  5886 12939 11780  20   0 117528  2284 n_tty_  Ss+  pts/1      0:01 -bin/tcsh 
0  5886 15993 11782  20   0 108128  1000 -       R+   pts/0      0:00 ps l 
0  5886 15994 12939  20   0   3920   340 hrtime  S     pts/1      0:00 ./a.out 
 
[xmeng@polaris lectures]$ renice 10 15994 
15994: old priority 0, new priority 10 
 
[xmeng@polaris lectures]$ ps l 
… 
0  5886 15994 12939  30  10   3920   340 hrtime SN   pts/1      0:00 ./a.out 
… 
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Round Robin (RR) 
• Each process gets a small unit of CPU time 

(time quantum), usually 10-100 milliseconds.  
After this time has elapsed, the process is 
preempted and added to the end of the ready 
queue. 

• If there are n processes in the ready queue and 
the time quantum is q, then each process gets 
1/n of the CPU time in chunks of at most q time 
units at once.  No process waits more than (n-
1)q time units. 
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RR with Time Quantum = 20 
  Process Burst Time 
  P1 53 
   P2  17 
   P3 68 
   P4  24 
 
• The Gantt chart is:  

 
 
 
 
 
 

• Typically, higher average turnaround than SJF, but better response. 

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3 

0 20 37 57 77 97 117 121 134 154 162 
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Time Quantum and Context 
Switch Time 

Question: What influences the choice of value for the quantum? 
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Turnaround Time Varies with the 
Time Quantum 
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Performance of RR 
• Effects of the quantum length q: 

– q large ⇒ FIFO. 
– q small ⇒ q must be large with respect to 

context switch, otherwise overhead is too 
high. 

– If q is extremely small, and we ignore the 
context switch cost, the result is processor 
sharing. 
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Multilevel Queue 
• Ready queue is partitioned into separate queues: 

– foreground (interactive) 
– background (batch) 

 
• Each queue has its own scheduling algorithm. 

– foreground: RR 
– background: FCFS 
 

• Scheduling must be done between the queues: 
– Fixed priority scheduling; (i.e., serve all from foreground then from 

background).  Possibility of starvation. 
– Time slice – each queue gets a certain amount of CPU time which it can 

schedule amongst its processes; i.e., 80% to foreground in RR. 
– 20% to background in FCFS . 
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Multilevel Queue Scheduling 
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Multilevel Feedback Queue 
• A process can move between the various queues; aging 

can be implemented this way. 
 
• Multilevel-feedback-queue scheduler defined by the 

following parameters: 
– number of queues, 
– scheduling algorithms for each queue, 
– method used to determine when to upgrade a process, 
– method used to determine when to demote a process, 
– method used to determine which queue a process will enter 

when that process needs service. 
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Example of Multilevel 
Feedback Queue 

• Three queues:  
– Q0 – time quantum 8 milliseconds (most favorite queue) 
– Q1 – time quantum 16 milliseconds 
– Q2 – FCFS (least favorite queue) 
 

• Scheduling 
– A new job enters queue Q0 which is served FCFS. When it gains 

CPU, job receives 8 milliseconds.  If it does not finish in 8 
milliseconds, job is moved to queue Q1. 

– At Q1 job is again served FCFS and receives 16 additional 
milliseconds.  If it still does not complete, it is preempted and 
moved to queue Q2. 
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Multilevel Feedback Queues 



Linux Scheduling 
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https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf 

• Linux maintains 140 run queues, one  
  for each priority level 
• Two sets of queues,  

•  queues 0-99 for real time processes  
•   queues 100-139 for regular processes 

• The priority values can be set by the  
system call nice (2) 

• only the super users can decrement  
the nice values 

• Different priority gives different CPU quanta 

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf


Determine Quantum Values 
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https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf 

• Calculate quantum 
• q = (140 − SP) × 20 if SP < 120 
• q = (140 − SP) × 5 if SP ≥ 120 
• where SP is the static priority 

• Higher priority process get longer quanta 
• Basic idea: important processes should run 
longer 
• Other mechanisms used for quick interactive 
response 

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf


Typical Quantum Values 
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https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf 

Static Pri Nice Quantum 

Highest static 100 -20 800 ms 

High 110 -10 600 ms 

Normal 120 0 100 ms 

Low static 130 +10 50 ms 

Lowest static 139 +20 5 ms 

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf


POSIX Thread Scheduling 

• A process could contain multiple threads 
or a single thread. 

• POSIX thread scheduling defines scope of 
thread scheduling. 
– PTHREAD_SCOPE_SYSTEM : a thread 

contends for CPU as if it were a process 
– PTHREAD_SCOPE_PROCESS : all threads 

in a process are grouped together to contend 
for CPU 
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Scope Examples 
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http://www.icir.org/gregor/tools/pthread-scheduling.html 

PTHREAD_SCOPE_SYSTEM : If there is one process P1 with 10 threads  
with scope PTHREAD_SCOPE_SYSTEM and a single threaded process P2,  
P2 will get one time slice out of 11 and every thread in P1 will get one  
time slice out of 11. 

PTHREAD_SCOPE_PROCESS : If there is a process with 4  
PTHREAD_SCOPE_PROCESS threads and 4 PTHREAD_SCOPE_SYSTEM  
threads, then each of the PTHREAD_SCOPE_SYSTEM threads will get a fifth  
of the CPU and the other 4 PTHREAD_SCOPE_PROCESS threads will share  
the remaining fifth of the CPU. The amount of CPU time for the four  
PTHREAD_SCOPE_PROCESS threads is determined by thread scheduling 
policy and priority. 

http://www.icir.org/gregor/tools/pthread-scheduling.html
http://www.icir.org/gregor/tools/pthread-scheduling.html
http://www.icir.org/gregor/tools/pthread-scheduling.html


Other Scheduling Parameters 

• Other scheduling parameters can be set or 
examined (get) using the pthread library 
calls pthread_getschedparam() and  
pthread_setschedparam(). 

• The priority and scheduling policy are 
meaningful only within the threads that are 
in the same scope. 
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