
CSCI 315 Operating Systems Design 1

CPU Scheduling Algorithms

Notice: The slides for this lecture have been largely based on those from the course text Operating
Systems Concepts, 9th ed., by Silberschatz, Galvin, and Gagne. Many, if not all, the illustrations
contained in this presentation come from this source. Revised by X.M. from notes by Perrone.

CSCI 315 Operating Systems Design 2

Scheduling Algorithms

CSCI 315 Operating Systems Design 3

First-Come, First-Served (FCFS)

 Process Burst Time
 P1 24
 P2 3
 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

CSCI 315 Operating Systems Design 4

Issues with FCFS
Suppose that the processes arrive in the order
 P2 , P3 , P1
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case.
• Convoy effect: all process are stuck waiting until a long process terminates.

P1 P3 P2

6 3 30 0

CSCI 315 Operating Systems Design 5

Shortest-Job-First (SJF)
• Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with
the shortest time.

• Two schemes:
– Nonpreemptive – once CPU given to a process it cannot be

preempted until completing its CPU burst.
– Preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process, preempt.
This scheme is know as the Shortest-Remaining-Time-First
(SRTF).

• SJF is optimal – gives minimum average waiting time
for a given set of processes.

Question: Is this practical? How can one determine the length of a CPU-burst?

CSCI 315 Operating Systems Design 6

 Process Arrival Time Burst Time
 P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Non-Preemptive SJF

P1 P3 P2

7 3 16 0

P4

8 12

CSCI 315 Operating Systems Design 7

Preemptive SJF
 Process Arrival Time Burst Time
 P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4
• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3 P2

4 2 11 0

P4

5 7

P2 P1

16

CSCI 315 Operating Systems Design 8

Determining Length of Next
CPU-Burst

• We can only estimate the length.
• This can be done by using the length of previous

CPU bursts, using exponential averaging:

? of value theofeffect The 4.
10 3.

 at timeburst CPU for the valuepredicted 2.
burst CPU oflenght actual 1.

α
α

τ
≤≤

=
=

n
nt

n

th
n

() nnn t ταατ −+=+ 1 1

CSCI 315 Operating Systems Design 9

Prediction of the Length of the
Next CPU-Burst

The graph is shown when α is 0.5

Class Exercise

• Given the actual CPU bursts are 6, 4, 6, 4, 13,
13, 13, and the initial estimate of τ is 10 as in
previous slide, show the first three predictions
when α takes the value of
– 0.2
– 0.7

• When α is 0.2, estimates are 9.2, 8.16, 7.73
• When α is 0.7, estimates are 7.2, 4.96, 5.69

CSCI 315 Operating Systems Design 10

CSCI 315 Operating Systems Design 11

Priority Scheduling
• A priority number (integer) is associated with each process.

• The CPU is allocated to the process with the highest priority

(typically, smallest integer ≡ highest priority)
– Preemptive
– Nonpreemptive

• SJF is a priority scheduling where priority is the predicted next CPU-
burst time.

• Problem: Starvation – low priority processes may never execute.
• Solution: Aging – as time progresses increase the priority of the

process.

Process Priority in Linux
• Priority scheduling is commonly used in

production OSes such as Linux
• In Linux, the priority values range from -20

(most favorite) to 20 (least favorite)
• Try ps al command on a Linux terminal
• We can run a CPU intensive job and use

the nice command to set its priority, or
renice command to change its priority.

CSCI 315 Operating Systems Design 12

CSCI 315 Operating Systems Design 13

[xmeng@polaris practice]$./a.out &
[xmeng@polaris lectures]$ ps l
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 5886 12939 11780 20 0 117528 2284 n_tty_ Ss+ pts/1 0:01 -bin/tcsh
0 5886 15993 11782 20 0 108128 1000 - R+ pts/0 0:00 ps l
0 5886 15994 12939 20 0 3920 340 hrtime S pts/1 0:00 ./a.out

[xmeng@polaris lectures]$ renice 10 15994
15994: old priority 0, new priority 10

[xmeng@polaris lectures]$ ps l
…
0 5886 15994 12939 30 10 3920 340 hrtime SN pts/1 0:00 ./a.out
…

CSCI 315 Operating Systems Design 14

Round Robin (RR)
• Each process gets a small unit of CPU time

(time quantum), usually 10-100 milliseconds.
After this time has elapsed, the process is
preempted and added to the end of the ready
queue.

• If there are n processes in the ready queue and
the time quantum is q, then each process gets
1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-
1)q time units.

CSCI 315 Operating Systems Design 15

RR with Time Quantum = 20
 Process Burst Time
 P1 53
 P2 17
 P3 68
 P4 24

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

CSCI 315 Operating Systems Design 16

Time Quantum and Context
Switch Time

Question: What influences the choice of value for the quantum?

CSCI 315 Operating Systems Design 17

Turnaround Time Varies with the
Time Quantum

CSCI 315 Operating Systems Design 18

Performance of RR
• Effects of the quantum length q:

– q large ⇒ FIFO.
– q small ⇒ q must be large with respect to

context switch, otherwise overhead is too
high.

– If q is extremely small, and we ignore the
context switch cost, the result is processor
sharing.

CSCI 315 Operating Systems Design 19

Multilevel Queue
• Ready queue is partitioned into separate queues:

– foreground (interactive)
– background (batch)

• Each queue has its own scheduling algorithm.

– foreground: RR
– background: FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR.
– 20% to background in FCFS .

CSCI 315 Operating Systems Design 20

Multilevel Queue Scheduling

CSCI 315 Operating Systems Design 21

Multilevel Feedback Queue
• A process can move between the various queues; aging

can be implemented this way.

• Multilevel-feedback-queue scheduler defined by the

following parameters:
– number of queues,
– scheduling algorithms for each queue,
– method used to determine when to upgrade a process,
– method used to determine when to demote a process,
– method used to determine which queue a process will enter

when that process needs service.

CSCI 315 Operating Systems Design 22

Example of Multilevel
Feedback Queue

• Three queues:
– Q0 – time quantum 8 milliseconds (most favorite queue)
– Q1 – time quantum 16 milliseconds
– Q2 – FCFS (least favorite queue)

• Scheduling
– A new job enters queue Q0 which is served FCFS. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

– At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

CSCI 315 Operating Systems Design 23

Multilevel Feedback Queues

Linux Scheduling

CSCI 315 Operating Systems Design 24

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

• Linux maintains 140 run queues, one
 for each priority level
• Two sets of queues,

• queues 0-99 for real time processes
• queues 100-139 for regular processes

• The priority values can be set by the
system call nice (2)

• only the super users can decrement
the nice values

• Different priority gives different CPU quanta

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

Determine Quantum Values

CSCI 315 Operating Systems Design 25

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

• Calculate quantum
• q = (140 − SP) × 20 if SP < 120
• q = (140 − SP) × 5 if SP ≥ 120
• where SP is the static priority

• Higher priority process get longer quanta
• Basic idea: important processes should run
longer
• Other mechanisms used for quick interactive
response

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

Typical Quantum Values

CSCI 315 Operating Systems Design 26

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

Static Pri Nice Quantum

Highest static 100 -20 800 ms

High 110 -10 600 ms

Normal 120 0 100 ms

Low static 130 +10 50 ms

Lowest static 139 +20 5 ms

https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

POSIX Thread Scheduling

• A process could contain multiple threads
or a single thread.

• POSIX thread scheduling defines scope of
thread scheduling.
– PTHREAD_SCOPE_SYSTEM : a thread

contends for CPU as if it were a process
– PTHREAD_SCOPE_PROCESS : all threads

in a process are grouped together to contend
for CPU

CSCI 315 Operating Systems Design 27

Scope Examples

CSCI 315 Operating Systems Design 28

http://www.icir.org/gregor/tools/pthread-scheduling.html

PTHREAD_SCOPE_SYSTEM : If there is one process P1 with 10 threads
with scope PTHREAD_SCOPE_SYSTEM and a single threaded process P2,
P2 will get one time slice out of 11 and every thread in P1 will get one
time slice out of 11.

PTHREAD_SCOPE_PROCESS : If there is a process with 4
PTHREAD_SCOPE_PROCESS threads and 4 PTHREAD_SCOPE_SYSTEM
threads, then each of the PTHREAD_SCOPE_SYSTEM threads will get a fifth
of the CPU and the other 4 PTHREAD_SCOPE_PROCESS threads will share
the remaining fifth of the CPU. The amount of CPU time for the four
PTHREAD_SCOPE_PROCESS threads is determined by thread scheduling
policy and priority.

http://www.icir.org/gregor/tools/pthread-scheduling.html
http://www.icir.org/gregor/tools/pthread-scheduling.html
http://www.icir.org/gregor/tools/pthread-scheduling.html

Other Scheduling Parameters

• Other scheduling parameters can be set or
examined (get) using the pthread library
calls pthread_getschedparam() and
pthread_setschedparam().

• The priority and scheduling policy are
meaningful only within the threads that are
in the same scope.

CSCI 315 Operating Systems Design 29

	CPU Scheduling Algorithms
	Scheduling Algorithms
	First-Come, First-Served (FCFS)
	Issues with FCFS
	Shortest-Job-First (SJF)
	Non-Preemptive SJF
	Preemptive SJF
	Determining Length of Next CPU-Burst
	Prediction of the Length of the Next CPU-Burst
	Class Exercise
	Priority Scheduling
	Process Priority in Linux
	Slide Number 13
	Round Robin (RR)
	RR with Time Quantum = 20
	Time Quantum and Context Switch Time
	Turnaround Time Varies with the Time Quantum
	Performance of RR
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Linux Scheduling
	Determine Quantum Values
	Typical Quantum Values
	POSIX Thread Scheduling
	Scope Examples
	Other Scheduling Parameters

