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Virtual Memory 

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition 
of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin, and Gagne.  Many, if 
not all, of the illustrations contained in this presentation come from this source. Revised by X.M. Based 
on Professor Perrone’s notes. 
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Virtual Memory 
• Virtual memory – separation of user logical memory 

from physical memory. 
– Only part of the program needs to be in memory for execution. 
– Logical address space can therefore be much larger than 

physical address space. 
– Allows address spaces to be shared by several processes. 
– Allows for more efficient process creation. 

 

• Virtual memory can be implemented via: 
– Demand paging  
– Demand segmentation 



Virtual Memory That is  
Larger Than Physical Memory 
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Demand Paging 
• Bring a page into memory only when it is needed. 

– Less I/O needed. 
– Less memory needed.  
– Faster response. 
– More users. 
 

• When a page is needed (there is a reference to it): 
– invalid reference ⇒ abort. 
– not-in-memory ⇒ bring to memory. 

 
• Lazy swapper – never swaps a page into memory 

unless page will be needed 
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Transfer of a Paged Memory to 
Contiguous Disk Space 
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Valid-Invalid Bit 
• With each page table entry a valid–invalid bit is associated 

(1 ⇒ in-memory, 0 ⇒ not-in-memory) 
• Initially valid–invalid but is set to 0 on all entries. 
• Example of a page table snapshot. 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
• During address translation, if valid–invalid bit in page table entry is 0 ⇒ page 

fault. 
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Page Table When Some Pages Are Not in Main Memory 
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Page Fault and Its Handling 
• If there is ever a reference to a page, first reference will trap to OS ⇒ 

page fault. 
 
• OS looks at page table and page limit table to decide: 

– If it was an invalid reference ⇒ abort. 
– If it was a reference to a page that is not in memory, continue. 
 

• Get an empty frame from the free-list. 
 
• Bring the page content from disk into frame. 

 
• Correct the page table and make validation bit = 1. 
 
• Restart the instruction that caused the page fault. 

 



Steps in Handling a Page Fault 
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No free frame: now what? 

• Page replacement: Are all those pages in 
memory being referenced? Choose one to swap 
back out to disk and make room to load a new 
page. 
– Algorithm: How you choose a victim. 
– Performance: Want an algorithm that will result in 

minimum number of page faults. 
 

• Side effect: The same page may be brought in 
and out of memory several times. 



Aspects of Demand Paging 
• Extreme case – start process with no pages in memory 

– OS sets instruction pointer to first instruction of process, non-
memory-resident -> page fault 

– And for every other process pages on first access 
– Pure demand paging 

 
• Actually, a given instruction could access multiple pages 

-> multiple page faults 
– Consider fetch and decode of instruction which adds 2 numbers 

from memory and stores result back to memory 
– Pain decreased because of locality of reference 
– Peter Denning’s Work Set Model (more later) 



Hardware Support for Demand 
Paging 

 

• Hardware support needed for demand 
paging 
– Page table with valid / invalid bit 
– Secondary memory (swap device with swap 

space) 
– Instruction restart 

• Add $s1, $t1, $t2      # easy 
• Mov  +4($sp), $t0     # challenge, side effect 
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Performance of Demand Paging 
• Page Fault Rate:   0 ≤ p ≤ 1.0 

– if p = 0 no page faults.  
– if p = 1, every reference is a fault. 

 
• Effective Access Time (EAT): 
        EAT = [(1 – p) (memory access)] + [p (page fault overhead)] 

 
where: 

page fault overhead = [swap page out ] + [swap page in] 
             + [restart overhead] 



Demand Paging Example 
• Memory access time = 200 nanoseconds 
• Average page-fault service time = 8 milliseconds 

 
• EAT = (1 – p) x 200 + p (8 milliseconds)  
         = (1 – p)  x 200 + p x 8,000,000  
              = 200 + p x 7,999,800 
• If one access out of 1,000 causes a page fault, then 
         EAT = 8.2 microseconds.  
      This is a slowdown by a factor of 40!! (in comparison to 200 ns) 
• If want performance degradation < 10 percent 

– 220 > 200 + 7,999,800 x p 
20 > 7,999,800 x p 

– p < .0000025 
– < one page fault in every 400,000 memory accesses 

  



Improve Performance 
• Swap space I/O faster than file system I/O even if on the same device 

– Swap allocated in larger chunks, less management needed than file system 
 

• Copy entire process image to swap space at process load time 
– Then page in and out of swap space 
– Used in older BSD Unix 

 
• Demand page in from program binary on disk, but discard rather than paging out 

when freeing frame 
– Used in Solaris and current BSD 
– Still need to write to swap space 

• Pages not associated with a file (like stack and heap) – anonymous memory 
• Pages modified in memory but not yet written back to the file system 

 

• Mobile systems 
– Typically don’t support swapping 
– Instead, demand page from file system and reclaim read-only pages (such as code) 



Copy-on-Write 
• Copy-on-Write (COW) allows both parent and child processes 

to initially share the same pages in memory 
– If either process modifies a shared page, only then is the page 

copied 
• COW allows more efficient process creation as only modified 

pages are copied 
• In general, free pages are allocated from a pool of zero-fill-on-

demand pages 
– Pool should always have free frames for fast demand page 

execution 
• Don’t want to have to free a frame as well as other processing on 

page fault 
– Why zero-out a page before allocating it? 

• vfork() variation on fork() system call has parent suspend 
and child using copy-on-write address space of parent 
– Designed to have child call exec() 
– Very efficient 
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Page Replacement 
• Prevent over-allocation of memory by modifying page-

fault service routine to include page replacement. 
 

• Use modify (dirty) bit to reduce overhead of page 
transfers – only modified pages are written to disk. 
 

• Page replacement completes separation between logical 
memory and physical memory – large virtual memory 
can be provided on a smaller physical memory. 
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Need For Page Replacement 
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