
CSCI 315 Operating Systems Design 1

Virtual Memory

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin, and Gagne. Many, if
not all, of the illustrations contained in this presentation come from this source. Revised by X.M. Based
on Professor Perrone’s notes.

CSCI 315 Operating Systems Design 2

Virtual Memory
• Virtual memory – separation of user logical memory

from physical memory.
– Only part of the program needs to be in memory for execution.
– Logical address space can therefore be much larger than

physical address space.
– Allows address spaces to be shared by several processes.
– Allows for more efficient process creation.

• Virtual memory can be implemented via:
– Demand paging
– Demand segmentation

Virtual Memory That is
Larger Than Physical Memory

CSCI 315 Operating Systems Design 4

Demand Paging
• Bring a page into memory only when it is needed.

– Less I/O needed.
– Less memory needed.
– Faster response.
– More users.

• When a page is needed (there is a reference to it):
– invalid reference ⇒ abort.
– not-in-memory ⇒ bring to memory.

• Lazy swapper – never swaps a page into memory

unless page will be needed

CSCI 315 Operating Systems Design 5

Transfer of a Paged Memory to
Contiguous Disk Space

CSCI 315 Operating Systems Design 6

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(1 ⇒ in-memory, 0 ⇒ not-in-memory)
• Initially valid–invalid but is set to 0 on all entries.
• Example of a page table snapshot.

• During address translation, if valid–invalid bit in page table entry is 0 ⇒ page

fault.

1
1
1
1
0

0
0

Frame # valid-invalid bit

page table

Page Table When Some Pages Are Not in Main Memory

CSCI 315 Operating Systems Design 8

Page Fault and Its Handling
• If there is ever a reference to a page, first reference will trap to OS ⇒

page fault.

• OS looks at page table and page limit table to decide:

– If it was an invalid reference ⇒ abort.
– If it was a reference to a page that is not in memory, continue.

• Get an empty frame from the free-list.

• Bring the page content from disk into frame.

• Correct the page table and make validation bit = 1.

• Restart the instruction that caused the page fault.

Steps in Handling a Page Fault

CSCI 315 Operating Systems Design 10

No free frame: now what?

• Page replacement: Are all those pages in
memory being referenced? Choose one to swap
back out to disk and make room to load a new
page.
– Algorithm: How you choose a victim.
– Performance: Want an algorithm that will result in

minimum number of page faults.

• Side effect: The same page may be brought in
and out of memory several times.

Aspects of Demand Paging
• Extreme case – start process with no pages in memory

– OS sets instruction pointer to first instruction of process, non-
memory-resident -> page fault

– And for every other process pages on first access
– Pure demand paging

• Actually, a given instruction could access multiple pages

-> multiple page faults
– Consider fetch and decode of instruction which adds 2 numbers

from memory and stores result back to memory
– Pain decreased because of locality of reference
– Peter Denning’s Work Set Model (more later)

Hardware Support for Demand
Paging

• Hardware support needed for demand
paging
– Page table with valid / invalid bit
– Secondary memory (swap device with swap

space)
– Instruction restart

• Add $s1, $t1, $t2 # easy
• Mov +4($sp), $t0 # challenge, side effect

CSCI 315 Operating Systems Design 13

Performance of Demand Paging
• Page Fault Rate: 0 ≤ p ≤ 1.0

– if p = 0 no page faults.
– if p = 1, every reference is a fault.

• Effective Access Time (EAT):
 EAT = [(1 – p) (memory access)] + [p (page fault overhead)]

where:

page fault overhead = [swap page out] + [swap page in]
 + [restart overhead]

Demand Paging Example
• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)
 = (1 – p) x 200 + p x 8,000,000
 = 200 + p x 7,999,800
• If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.
 This is a slowdown by a factor of 40!! (in comparison to 200 ns)
• If want performance degradation < 10 percent

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

Improve Performance
• Swap space I/O faster than file system I/O even if on the same device

– Swap allocated in larger chunks, less management needed than file system

• Copy entire process image to swap space at process load time
– Then page in and out of swap space
– Used in older BSD Unix

• Demand page in from program binary on disk, but discard rather than paging out

when freeing frame
– Used in Solaris and current BSD
– Still need to write to swap space

• Pages not associated with a file (like stack and heap) – anonymous memory
• Pages modified in memory but not yet written back to the file system

• Mobile systems
– Typically don’t support swapping
– Instead, demand page from file system and reclaim read-only pages (such as code)

Copy-on-Write
• Copy-on-Write (COW) allows both parent and child processes

to initially share the same pages in memory
– If either process modifies a shared page, only then is the page

copied
• COW allows more efficient process creation as only modified

pages are copied
• In general, free pages are allocated from a pool of zero-fill-on-

demand pages
– Pool should always have free frames for fast demand page

execution
• Don’t want to have to free a frame as well as other processing on

page fault
– Why zero-out a page before allocating it?

• vfork() variation on fork() system call has parent suspend
and child using copy-on-write address space of parent
– Designed to have child call exec()
– Very efficient

CSCI 315 Operating Systems Design 17

Page Replacement
• Prevent over-allocation of memory by modifying page-

fault service routine to include page replacement.

• Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk.

• Page replacement completes separation between logical
memory and physical memory – large virtual memory
can be provided on a smaller physical memory.

CSCI 315 Operating Systems Design 18

Need For Page Replacement

	Virtual Memory
	Virtual Memory
	Virtual Memory That is �Larger Than Physical Memory
	Demand Paging
	Transfer of a Paged Memory to Contiguous Disk Space
	Valid-Invalid Bit
	Page Table When Some Pages Are Not in Main Memory
	Page Fault and Its Handling
	Steps in Handling a Page Fault
	No free frame: now what?
	Aspects of Demand Paging
	Hardware Support for Demand Paging
	Performance of Demand Paging
	Demand Paging Example
	Improve Performance
	Copy-on-Write
	Page Replacement
	Need For Page Replacement

