
1

CSCI 315 Operating Systems Design 1

Page Replacement
-- Part 1 of 2

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin, and Gagne. Many, if
not all, of the illustrations contained in this presentation come from this source. Revised by X.M. Based
on Professor Perrone’s notes.

Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:
- If there is a free frame, use it.
- If there is no free frame use a page replacement

CSCI 315 Operating Systems Design 2

If there is no free frame, use a page replacement
algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame.
Update the page and frame tables.

4. Restart the process.

Page Replacement

CSCI 315 Operating Systems Design 3

Page Replacement Algorithms
• Goal: Produce a low page-fault rate.
• Evaluate algorithm by running it on a particular

string of memory references (reference string)
and computing the number of page faults on that
string.

CSCI 315 Operating Systems Design 4

• The reference string is produced by tracing a
real program or by some stochastic model. We
look at every address produced and strip off the
page offset, leaving only the page number. For
instance:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Graph of Page Faults Versus The
Number of Frames

CSCI 315 Operating Systems Design 5

FIFO Page Replacement
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
• 3 frames

• 4 frames

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

CSCI 315 Operating Systems Design 6

• FIFO Replacement  Belady’s Anomaly: more frames, more
page faults.

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

2

FIFO (Belady’s Anomaly)

CSCI 315 Operating Systems Design 7

Optimal Algorithm
• Replace the page that will not be used for longest period

of time.

• 4 frames example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

4

6 page faults

CSCI 315 Operating Systems Design 8

• Used for measuring how well your algorithm performs.

• How can you know what the future references will be?

2

3

6 page faults

4 5

Another FIFO Page
Replacement Example

CSCI 315 Operating Systems Design 9

FIFO: 15 page faults

Optimal Page Replacement

CSCI 315 Operating Systems Design 10

Optimal: 9 page faults

Optimal not Practical!

• Optimal page replace algorithm works great,
except it is not practical!
– Compare to optimal CPU scheduling algorithm

(Shortest-Remaining-Time-First)

• We will try to approximate the optimal algorithm
– In CPU scheduling, we try to predict the next CPU

burst length and use it to approximate the SJF

• In page replacement, we use LRU (Least
Recently Used) to approximate the optimal
algorithm

CSCI 315 Operating Systems Design 11

LRU Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

5

4

4 3

5

Optimal: 6 page faults
LRU: 8 page faults

CSCI 315 Operating Systems Design 12

• It works great!

• But, how do we implement the LRU algorithm? (more later.)

3

LRU Page Replacement

CSCI 315 Operating Systems Design 13

Optimal: 9 page faults
LRU: 12 page faults

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of
page numbers in a double link form:
– Page referenced:

• move it to the top

CSCI 315 Operating Systems Design 14

• move it to the top

• requires 6 pointers to be changed

– No search for replacement.

LRU and Belady’s Anomaly
• LRU does not suffer from Belady’s Anomaly

(OPT doesn’t either).

• It has been shown that algorithms in a class
called stack algorithms can never exhibit

CSCI 315 Operating Systems Design 15

called stack algorithms can never exhibit
Belady’s Anomaly.

• A stack algorithm is one for which the set of
pages in memory for n frames is a subset of the
pages that could be in memory for n+1 frames.

Use Of A Stack to Record The Most Recent
Page References

CSCI 315 Operating Systems Design 16

LRU Approximation Algorithms

• Reference bit
– With each page associate a bit, initially = 0

– When page is referenced bit set to 1.

– Replace the one which is 0 (if one exists). We do not know the
order, however.

• Additional reference bits (e.g., 8 bits)

CSCI 315 Operating Systems Design 17

Additional reference bits (e.g., 8 bits)
– Every time a page is referenced

• Shift the reference bits to the right by 1

• Place the reference bit (1 if being visited, 0 otherwise) into the high
order bit of the reference bits

• The page with the lowest reference bits value is the one that is
Least Recently Used, thus to be replaced

– E.g., the page with ref bits 11000100 is more recently used
than the page with ref bits 01110111

LRU Approximation Algorithms

• Second Chance
– If we consider the number of reference history bits to be zero,

only using the reference bit itself, we have the Second Chance
(a.k.a. Clock) algorithm

– Need a pointer (clock handle) to point the next victim.

– At each clock interruption, we check the reference bit for the

CSCI 315 Operating Systems Design 18

victim.

– If the victim page has reference bit = 1, then:
• set reference bit 0.

• leave this page in memory.

– Else if the page reference bit is 0, this page can be
replaced.

4

Second-Chance (Clock)
Page-Replacement Algorithm

CSCI 315 Operating Systems Design 19

Counting Algorithms

• Keep a counter of the number of references that
have been made to each page.

• LFU Algorithm: replaces page with smallest
count

CSCI 315 Operating Systems Design 20

count.

• MFU Algorithm: based on the argument that
the page with the smallest count was probably
just brought in and has yet to be used.

Allocation of Frames

• Each process needs a minimum number of
pages.

• There are two major allocation schemes:

CSCI 315 Operating Systems Design 21

• There are two major allocation schemes:

– fixed allocation

– priority allocation

Fixed Allocation
• Equal allocation – e.g., if 100 frames and 5 processes, give

each 20 pages.

• Proportional allocation – Allocate according to the size of
process.

sS

ps

i

ii



 process of size

64m

CSCI 315 Operating Systems Design 22

m
S
s

pa

m

i
ii

i






 for allocation

frames of number total

5964
137
127

564
137
10

127

10

2

1

2









a

a

s

si

Priority Allocation

• Use a proportional allocation scheme
using priorities rather than size.

• If process P generates a page fault

CSCI 315 Operating Systems Design 23

• If process Pi generates a page fault,
– select for replacement one of its frames.

– select for replacement a frame from a process
with lower priority number.

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all
frames; one process can take a frame from
another

CSCI 315 Operating Systems Design 24

another.

• Local replacement – each process selects
from only its own set of allocated frames.

5

Thrashing

• If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
– Low CPU utilization.

– Operating system thinks that it needs to increase the

CSCI 315 Operating Systems Design 25

degree of multiprogramming.

– Another process added to the system.

• Thrashing  a process is busy swapping pages
in and out.

Thrashing

CSCI 315 Operating Systems Design 26

• Why does paging work?
Locality model
– Process migrates from one locality to another.

– Localities may overlap.

• Why does thrashing occur?
 size of locality > total memory size

Locality in Memory-Reference Pattern

CSCI 315 Operating Systems Design 27

Working-Set Model
•   working-set window  a fixed number of page

references.

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent 
(varies in time)

CSCI 315 Operating Systems Design 28

– if  too small will not encompass entire locality.

– if  too large will encompass several localities.

– if  =   will encompass entire program.

• D =  WSSi  total demand frames

• if D > m  Thrashing

• Policy if D > m, then suspend one of the processes.

Working-set model

CSCI 315 Operating Systems Design 29

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000
– Timer interrupts after every 5000 time units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts copy and sets the values of all
reference bits to 0

CSCI 315 Operating Systems Design 30

reference bits to 0.

– If one of the bits in memory = 1  page in working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time
units.

6

Page-Fault Frequency Scheme

CSCI 315 Operating Systems Design 31

Establish “acceptable” page-fault rate.
– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

Memory-mapped Files
• Memory mapping a file can be accomplished by mapping

a disk block to one or more pages in memory.

• A page-sized portion of the file is read from the file
system into a physical page. Subsequent read() and

CSCI 315 Operating Systems Design 32

write() operations are handled as memory (not disk)
accesses.

• Writing to the file in memory is not necessarily
synchronous to the file on disk. The file can be
committed back to disk when it’s closed.

Memory-mapped Files

1
2
3
4
5

1
2
3
4
5

1

3

5

6

CSCI 315 Operating Systems Design 33

6
5
6

process A
virtual memory

process B
virtual memory

2
4

5

1 2 3 4 5 6

disk file

Prepaging
• Prepaging: In order to avoid the initial number of page

faults, the system can bring into memory all the pages
that will be needed all at once.

• This can also be applied when a swapped-out process is
restarted. The smart thing to do is to remember the

CSCI 315 Operating Systems Design 34

g
working set of the process.

• One question that arises is whether all the pages
brought in will actually be used…

• Is the cost of prepaging less than the cost of servicing
each individual page fault?

