
CSCI 315 Operating Systems Design 1

Page Replacement
-- Part 2 of 2

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin, and Gagne. Many, if
not all, of the illustrations contained in this presentation come from this source. Revised by X.M. Based
on Professor Perrone’s notes.

CSCI 315 Operating Systems Design 2

LRU Approximation Algorithms
• Reference bit

– With each page associate a bit, initially = 0
– When page is referenced bit set to 1.
– Replace the one which is 0 (if one exists). We do not know the

order, however.

• Additional reference bits (e.g., 8 bits)
– Every time a page is referenced

• Shift the reference bits to the right by 1
• Place the reference bit (1 if being visited, 0 otherwise) into the high

order bit of the reference bits
• The page with the lowest reference bits value is the one that is

Least Recently Used, thus to be replaced
– E.g., the page with ref bits 11000100 is more recently used

than the page with ref bits 01110111

CSCI 315 Operating Systems Design 3

LRU Approximation Algorithms
• Second Chance

– If we consider the number of reference history bits to be zero,
only using the reference bit itself, we have the Second Chance
(a.k.a. Clock) algorithm

– Need a pointer (clock handle) to point the next victim.
– At each clock interruption, we check the reference bit for the

victim.
– If the victim page has reference bit = 1, then:

• set reference bit 0.
• leave this page in memory.

– Else if the page reference bit is 0, this page can be
replaced.

CSCI 315 Operating Systems Design 4

Second-Chance (Clock)
Page-Replacement Algorithm

CSCI 315 Operating Systems Design 5

Counting Algorithms
• Keep a counter of the number of references that

have been made to each page.

• LFU Algorithm: replaces page with smallest
count.

• MFU Algorithm: based on the argument that
the page with the smallest count was probably
just brought in and has yet to be used.

CSCI 315 Operating Systems Design 6

Allocation of Frames

• Each process needs a minimum number of
pages.

• There are two major allocation schemes:

– fixed allocation
– priority allocation

CSCI 315 Operating Systems Design 7

Fixed Allocation
• Equal allocation – e.g., if 100 frames and 5 processes, give

each 20 pages.
• Proportional allocation – Allocate according to the size of

process.

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127
10
64

2

1

2

1

≈×=

≈×=

=
=
=

a

a

s
s
m

CSCI 315 Operating Systems Design 8

Priority Allocation

• Use a proportional allocation scheme
using priorities rather than size.

• If process Pi generates a page fault,
– select for replacement one of its frames; or
– select for replacement a frame from a process

with lower priority number.

CSCI 315 Operating Systems Design 9

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all
frames; one process can take a frame from
another.

• Local replacement – each process selects

from only its own set of allocated frames.

CSCI 315 Operating Systems Design 10

Thrashing

• If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
– Low CPU utilization.
– Operating system thinks that it needs to increase the

degree of multiprogramming.
– Another process added to the system.

• Thrashing ≡ a process is busy swapping pages

in and out to a degree that no effective
computing is accomplished.

CSCI 315 Operating Systems Design 11

Thrashing

• Why does paging work?
Locality model
– Process migrates from one locality to another.
– Localities may overlap.

• Why does thrashing occur?
Σ size of locality > total memory size

CSCI 315 Operating Systems Design 12

Locality in Memory-Reference Pattern

CSCI 315 Operating Systems Design 13

Working-Set Model
• ∆ ≡ working-set window ≡ a fixed number of page

references.
• WSSi (working set of Process Pi) =

total number of pages referenced in the most recent ∆
(varies in time)
– if ∆ too small will not encompass entire locality.
– if ∆ too large will encompass several localities.
– if ∆ = ∞ ⇒ will encompass entire program.

• D = Σ WSSi ≡ total demand frames from all active
processes

• if D > m ⇒ Thrashing
• Policy if D > m, then suspend one of the processes.

CSCI 315 Operating Systems Design 14

Working-set Model Illustration

Δ = 10 pages (frames)

CSCI 315 Operating Systems Design 15

Keeping Track of the Working Set
• Approximate with interval timer + a reference bit
• Example: ∆ = 10,000

– Timer interrupts after every 5000 time units.
– Keep in memory 2 bits for each page.
– Whenever a timer interrupts copy and set the values of all

reference bits to 0.
– If one of the bits in memory = 1 ⇒ page in working set.

• Why is this not completely accurate?
• Improvement = 10 bits and interrupt every 1000 time

units.

CSCI 315 Operating Systems Design 16

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate.
– If actual rate too low, process loses frame.
– If actual rate too high, process gains frame.

Working Sets and Page Fault Rates

 Direct relationship between working set of a process
and its page-fault rate

 Working set changes over time
 Peaks and valleys over time

CSCI 315 Operating Systems Design 18

Prepaging
• Prepaging: In order to avoid the initial number of page

faults, the system can bring into memory all the pages
that will be needed all at once.

• This can also be applied when a swapped-out process is

restarted. The smart thing to do is to remember the
working set of the process.

• One question that arises is whether all the pages

brought in will actually be used…

• Is the cost of prepaging less than the cost of servicing

each individual page fault?

The Effect of Program Structure
• Program structure

– int[128][128] data;
– Each row is stored in one page
– Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++)
 data[i][j] = 0;

 128 x 128 = 16,384 page faults

– Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i][j] = 0;

128 page faults

	Page Replacement�-- Part 2 of 2
	LRU Approximation Algorithms
	LRU Approximation Algorithms
	Second-Chance (Clock) �Page-Replacement Algorithm
	Counting Algorithms
	Allocation of Frames
	Fixed Allocation
	Priority Allocation
	Global vs. Local Allocation
	Thrashing
	Thrashing
	Locality in Memory-Reference Pattern
	Working-Set Model
	Working-set Model Illustration
	Keeping Track of the Working Set
	Page-Fault Frequency Scheme
	Working Sets and Page Fault Rates
	Prepaging
	The Effect of Program Structure

