
CSCI 315 Operating Systems Design 1

Directories and Meta-Data
Notice: The slides for this lecture have been largely based on Professor Perrone’s notes. Revised by
Xiannong Meng.

CSCI 315 Operating Systems Design 2

Directory Structure
Directory: a symbol table that maps file names into

directory entries.

Both the directory structure and the files reside on disk.
Backups of these two structures are kept on back-up
storage.

ping

emacs

ifconfig

mount

fdisk

find

…

…

CSCI 315 Operating Systems Design 3

Partitions and Directories
(File system organization)

CSCI 315 Operating Systems Design 4

Operations on Directories

• Search for a file.
• Create a file.
• Delete a file.
• List a directory.
• Rename a file.
• Traverse the file system.

Example of Directory Listing

CSCI 315 Operating Systems Design 5

#include <stdlib.h>
#include <sys/types.h>
#include <dirent.h>

int main(int argc, char* argv[]) {

 struct dirent *dp;
 DIR *dirp;

 if (argc != 2) {
 fprintf(stderr, "usage %s dir_name\n", argv[0]);
 exit(1);
 }
 char * dname = argv[1];

 dirp = opendir(dname);
 if (dirp != NULL) { // it is a directory

 printf("directory : %s\n",dname);

 for (dp = readdir(dirp); NULL != dp; dp = readdir(dirp)) {
 printf("%s\n", dp->d_name);
 }
 closedir (dirp);
 }

 return 0;
}

[xmeng@linuxremote1 files]$ gcc list_dir.c
[xmeng@linuxremote1 files]$./a.out ../
directory : ../
.
..
thread
sync
process
deadlock
scheduling
memory
files
[xmeng@linuxremote1 files]$./a.out ./
directory : ./
.
..
file-test.c
a.out
file-test.c~
list_dir.c
hello.txt
list_dir.c~
[xmeng@linuxremote1 files]$

CSCI 315 Operating Systems Design 6

Goals of Directory Logical
Organization

• Efficiency – locating a file quickly.

• Naming – convenient to users.

– Two users can have same name for different files.
– The same file can have several different names.

• Grouping – logical grouping of files by
properties, (e.g., all Java programs, all games,
…)

CSCI 315 Operating Systems Design 7

Single-Level Directory

A single directory for all users.

Drawbacks:
 Naming problem
 Grouping problem

CSCI 315 Operating Systems Design 8

Two-Level Directory
A separate directory for each user.

• Path name.
• Can have the same file name for different user.
• Efficient searching.
• No grouping capability.

CSCI 315 Operating Systems Design 9

Tree-Structured Directories

CSCI 315 Operating Systems Design 10

Tree-Structured Directories
(Cont.)

• Efficient searching.

• Grouping Capability.

• Current directory (working directory):
– cd /spell/mail/prog,
– type list.

CSCI 315 Operating Systems Design 11

Tree-Structured Directories
(Cont.)

• Absolute or relative path name.
• Creating a new file is done in current directory by default.
• Delete a file
 rm <file-name>
• Creating a new subdirectory is done in current directory.

 mkdir <dir-name>
 Example: if in current directory /mail
 mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”.

CSCI 315 Operating Systems Design 12

Acyclic-Graph Directories
Have shared subdirectories and files.

CSCI 315 Operating Systems Design 13

Acyclic-Graph Directories
(Cont.)

• Two different names (aliasing).
• If dict deletes list ⇒ dangling pointer.
 Solutions:

– Backpointers, so we can delete all pointers.
Variable size records a problem.

– Backpointers using a daisy chain
organization.

– Entry-hold-count solution.

CSCI 315 Operating Systems Design 14

Acyclic-Graph Directories
Have shared subdirectories and files.

links: soft (symbolic)

 hard

Unix: ln (read man page);

need to keep a reference count on
each file or directory.

CSCI 315 Operating Systems Design 15

Acyclic-Graph Directories
(Cont.)

• Different names (aliasing) for the same file
or directory.

• If dict deletes list ⇒ dangling pointer.
 Solutions:

– Backpointers, so we can delete all pointers.
Variable size records a problem.

– Backpointers using a daisy chain
organization.

– Entry-hold-count solution.

CSCI 315 Operating Systems Design 16

General Graph Directory

CSCI 315 Operating Systems Design 17

General Graph Directory (Cont.)

• How do we guarantee no cycles?
– Allow only links to file not subdirectories.
– Garbage collection.
– Every time a new link is added use a cycle

detection algorithm to determine whether it is
OK.

CSCI 315 Operating Systems Design 18

File System Mounting
• A file system (partition) must be mounted before it can be

accessed. Mounting allows one to attach the file system on one
device to the file system on another device.

• A unmounted file system needs to be attached to a mount point
before it can be accessed.

existing unmounted

CSCI 315 Operating Systems Design 19

File Sharing

• Sharing of files on multi-user systems is desirable.

• Sharing may be done through a protection scheme.

• On distributed systems, files may be shared across a
network.

• Network File System (NFS) is a common distributed file-
sharing method.

CSCI 315 Operating Systems Design 20

Protection
• File owner/creator should be able to control:

– what can be done,
– by whom.

• Types of access:

– Read,
– Write,
– Execute,
– Append,
– Delete,
– List.

Discretionary Access Control (DAC)

CSCI 315 Operating Systems Design 21

Protection
• Mandatory Access Control (MAC):

– System policy: files tied to access levels = (public, restricted,
confidential, classified, top-secret).

– Process also has access level: can read from and write to all

files at same level, can only read from files below, can only write
to files above.

• Role-Based Access Control (RBAC):

– System policy: defines “roles” (generalization of the Unix idea
of groups).

– Roles are associated with access rules to sets of files and
devices.

– A process can change roles (in a pre-defined set of possibilities)
during execution.

CSCI 315 Operating Systems Design 22

Access Lists and Groups
• Mode of access: read, write, execute
• Three classes of users
 RWX
 a) owner access 7 ⇒ 1 1 1

 RWX
 b) group access 6 ⇒ 1 1 0
 RWX
 c) public access 1 ⇒ 0 0 1

• Ask manager to create a group (unique name), say G, and add some

users to the group.
• For a particular file (say game) or subdirectory, define an appropriate

access.

owner group public

chmod 761 game

Associate a group with a file: chgrp G game

A Sample UNIX Directory Listing

Windows 7 Access-Control List Management

	Directories and Meta-Data
	Directory Structure
	Partitions and Directories�(File system organization)
	Operations on Directories
	Example of Directory Listing
	Goals of Directory Logical Organization
	Single-Level Directory
	Two-Level Directory
	Tree-Structured Directories
	Tree-Structured Directories (Cont.)
	Tree-Structured Directories (Cont.)
	Acyclic-Graph Directories
	Acyclic-Graph Directories (Cont.)
	Acyclic-Graph Directories
	Acyclic-Graph Directories (Cont.)
	General Graph Directory
	General Graph Directory (Cont.)
	File System Mounting
	File Sharing
	Protection
	Protection
	Access Lists and Groups
	A Sample UNIX Directory Listing
	Windows 7 Access-Control List Management

