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File Systems Implementation
-- Part 2

Notice: The slides for this lecture have been largely based on Professor Perrone’s notes. Revised by
Xiannong Meng.

inode in Linux/Unix

• File control blocks in Linux are called 
inode (has nothing to do with Apple) 
meaning index node.

http://www tldp org/LDP/tlk/ds/ds html– http://www.tldp.org/LDP/tlk/ds/ds.html

• Each file in Linux has a unique control 
block (inode)
– “ls -i”  shows the inode number of the files

– “stat file_name” shows inode number and 
other information
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Linux File System Structure
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http://www.learnlinux.org.za/courses/build/internals/ch08s04.html

Linux inode Structure
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http://www.csie.ntu.edu.tw/~pangfeng/System%20Programming/Lecture_Note_2.htm

In-Memory File System Structures

file open
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file read

Per-process
open-file table
part of PCB

An Example

• Consider ‘open(“hello.txt”, O_RDONLY)’ in 
– http://www.eg.bucknell.edu/~cs315/2013-fall/code-

examples/files/file-stream.c

• Where does the file “hello.txt” reside?

• On a remote computer!
– unixspace.eg.bucknell.edu

– Use “df” to find out

• Implication?

• File system has to work with networked files
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Virtual File Systems

• Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems.

• VFS allows the same system call interface (the 
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API) to be used for different types of file 
systems.

• The API is to the VFS interface, rather than any 
specific type of file system.

Schematic View of Virtual File 
System

same API for
all file system
types
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ext3 FAT 32 NFS

yp

Virtual File System Implementation

• For example, Linux has four object types:
– inode, file, superblock, dentry

• VFS defines set of operations on the objects that must 
be implemented, inode -> vnode
– Every object has a pointer to a function table– Every object has a pointer to a function table

• Function table has addresses of routines to implement that function 
on that object

• For example:
• int open() -- Open a file

• int close() -- Close an already-open file

• ssize t read() -- Read from a file

• ssize t write() -- Write to a file

• int mmap() -- Memory-map a file

Directory Implementation

• Linear list of file names with pointer to the data 
blocks:
– simple to program, but…

The directory is a symbol table that maps file names to file control block which 
has pointers that lead to the blocks comprising a file.
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– time-consuming to execute.

• Hash Table:
– decreases directory search time,

– collisions – situations where two file names hash to 
the same location,

– fixed size.

Linux dirent.h

struct dirent {    
ino_t d_ino;                /* inode number */    
off_t d_off;                  /* offset to the next dirent */                   
unsigned short d_reclen;    /* length of this record */    
unsigned char d type; /* type of file; not
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unsigned char  d_type;      /  type of file; not 
supported by all file
system types */ 

char      d_name[256];        /* filename */
};

Code Example to Access Directories
dirp = opendir(dname);  
if (dirp != NULL) { // it is a directory 

printf("directory : %s\n",dname); 
for (dp = readdir(dirp); NULL != dp; dp = readdir(dirp)) {

printf("%s\n", dp->d_name);      
print_ftype(dp->d_type);    

}    
closedir (dirp);  }

[xmeng@polaris files]$ ./a.out ./
directory : ./
name: [.] type: [directory]
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name: [..] type: [directory]
name: [file-test.c] type: [regular]
name: [list_dir.c] type: [regular]
name: [hello.txt] type: [regular]
name: [file-stream.c] type: [regular]
name: [a.out] type: [regular]
name: [test] type: [directory]
name: [list_dir.c~] type: [regular]
[xmeng@polaris files]$ 

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/files/list_dir.c
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Allocation Methods

An allocation method refers to how disk 
blocks are allocated for files. We’ll discuss 
three options:
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Contiguous allocation,

Linked allocation,

Indexed allocation.

Disk Structure

sector

read/write head

direction of rotation

direction of movement

Points to consider:

Sector sizes (number of bits 
per sector) are fixed in most 
disks, which means the 
data density is lower on 
outside tracks.

Newer formats, e.g., zone-
bit-recording uses variable
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track

arm

bit recording, uses variable 
size sectors so sectors 
have similar data density.

The disk rotates at a 
constant speed. To find a 
block, the head is moved to 
the appropriate track, and 
then the correct sector is 
found as the disk rotates. Organization of a disk surface

Disk Structure

sector

read/write head

direction of rotation

direction of movement

The disk rotation is given in 
rotations per minute (RPM).

The time to find a track is 
proportional to the distance 
the head must travel. 

The average time to find a 
sector within a track is 
roughly half the time for a 

CSCI 315 Operating Systems Design 15

track

arm

g y
full rotation.

Question: If the time to 
move from track i to track 
(i+1) is given by , 
assuming that the disk head 
is at track 0 (all the way 
out), could you calculate the 
time to get to sector 4 in 
track 5?

Organization of a disk surface

Disk Structure

direction of rotation

Multi-surface disk A cylinder is the collection of all 
the same tracks across all the 
multiple disk surfaces.

There is a time associated with 
turning heads on and off so that a 
different surface can be accessed. 
We call this overhead the head-
switching time.
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direction of movement

arm

read/write heads
cylinder

The time to move the arm to read 
another cylinder is due to the 
mechanics of the arm. It is 
certainly much large than the 
head-switching time, which is due 
to electronics only.

Question: How should one 
organize data across multiple 
surfaces to minimize access 
overhead?


