L.NE% UNIVERSITY

Computer Science
CSCI 315 Operating Systems Design

File Systems Implementation
-- Part 2

Notice: The slides for this lecture have been largely based on Professor Perrone’s notes. Revised by
Xiannong Meng.

CSCI 315 Operating Systems Design 1

inode in Linux/Unix

* File control blocks in Linux are called
inode (has nothing to do with Apple)
meaning index node.

— http://www.tldp.org/LDP/tlk/ds/ds.html

< Each file in Linux has a unique control
block (inode)

—"“ls -i” shows the inode number of the files

— “stat file_name” shows inode number and
other information

CSCI 315 Operating Systems Design 2

Linux File System Structure

UNIX File System Layout

Hard

Partition

Table 2 3,79 Permissions etc,

e Jigts Data

Directory
List 2 Kemel 3 |a|s]e|7
Takin

rum Flararrs

http://www.learnlinux.org.za/courses/build/internals/ch08s04.html
CSCI 315 Operating Systems Design

Linux inode Structure

http://www.csie.ntu.edu.tw/~pangfeng/System%20Programming/Lecture_Note_2.htm
CSCI 315 Operating Systems Design 4

In-Memory File System Structures

4_J h
BCIONY UUCILNg
apon (filaname) ol :
draciory structurg file control block > file open
usar space kemal mamary secondary slorage
(a} -~
m{- I
| 1 | /unm blocks
read (index) Iy o S > file read
par-process systam-wide fil controd block
open-fila table opan-fila tabla
user space kaenel mamary " secondary storage
[} _J Per-process
open-file table
part of PCB

CSCI 315 Operating Systems Design

An Example

« Consider ‘open(“hello.txt”, O_RDONLY)’ in

— http://www.eqg.bucknell.edu/~cs315/2013-fall/code-
examples/files/file-stream.c

* Where does the file “hello.txt” reside?
¢ On a remote computer!

— unixspace.eg.bucknell.edu

— Use “df” to find out

 Implication?
* File system has to work with networked files

CSCI 315 Operating Systems Design 6

Virtual File Systems

» Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems.

* VFS allows the same system call interface (the
API) to be used for different types of file
systems.

* The APl is to the VFS interface, rather than any
specific type of file system.

CSCI 315 Operating Systems Design 7

Schematic View of Virtual File
System

fhe-system intortace

3 i same API for
NFR It iace all file system

types
| Tocal file system ‘ | focal file syssem | rmals fie systarm
typ 1 oo 2 typn 1
é ext3 % FAT32 g NFS
retwork
CSCI 315 Operating Systems Design 8

Virtual File System Implementation

« For example, Linux has four object types:
— inode, file, superblock, dentry

« VFS defines set of operations on the objects that must
be implemented, inode -> vnode
— Every object has a pointer to a function table

« Function table has addresses of routines to implement that function
on that object

« For example:

= int open() -- Open afile

« int close() -- Close an already-open file
- ssize t read() -- Read from a file

« ssize t write() -- Write to a file

« int mmap() -- Memory-map a file

Directory Implementation

The directory is a symbol table that maps file names to file control block which
has pointers that lead to the blocks comprising a file.

e Linear list of file names with pointer to the data
blocks:
— simple to program, but...
— time-consuming to execute.
e Hash Table:
— decreases directory search time,

— collisions — situations where two file names hash to
the same location,

— fixed size.

CSCI 315 Operating Systems Design 10

Linux dirent.h

struct dirent {
ino_t d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file; not
supported by all file
system types */
char d_name[256]; /* filename */

CSCI 315 Operating Systems Design 11

Code Example to Access Directories

dirp = opendir(dname);
if (dirp '= NULL) { // it is a directory
printf("directory : %s\n",dname);
for (dp = readdir(dirp); NULL != dp; dp = readdir(dirp)) {
printf("%s\n", dp->d_name);

print_ftype(dp->d_type); [xmeng@polaris files]$./a.out ./
directory : ./
closedir (dirp); } name: [] type: [directory]

name: [..] type: [directory]

name: [file-test.c] type: [regular]
name: [list_dir.c] type: [regular]
name: [hello.txt] type: [regular]
name: [file-stream.c] type: [regular]
name: [a.out] type: [regular]

name: [test] type: [directory]

name: [list_dir.c~] type: [regular]
[xmeng@polaris files]$

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/files/list_dir.c
CSCI 315 Operating Systems Design 12

Allocation Methods

An allocation method refers to how disk
blocks are allocated for files. We'll discuss
three options:

==) Contiguous allocation,
== | inked allocation,
== |[ndexed allocation.

CSCI 315 Operating Systems Design 13

Disk Structure

Points to consider:

Sector sizes (number of bits
per sector) are fixed in most
disks, which means the
data density is lower on
outside tracks.

Newer formats, e.g., zone-
bit-recording, uses variable
size sectors so sectors
have similar data density.

The disk rotates at a
constant speed. To find a
block, the head is moved to
the appropriate track, and
then the correct sector is
found as the disk rotates.

read/write head

direction of movement
—

arm

direction of rotation

sector

Organization of a disk surface

CSCI 315 Operating Systems Design

14

Disk Structure

The disk rotation is given in
rotations per minute (RPM).

The time to find a track is
proportional to the distance
the head must travel.

The average time to find a
sector within a track is
roughly half the time for a
full rotation.

Question: If the time to
move from track i to track
(i+1) is given by §,
assuming that the disk head
is at track O (all the way
out), could you calculate the
time to get to sector 4 in
track 5?

direction of movement
—

direction of rotation

sector

read/write head

Organization of a disk surface

CSCI 315 Operating Systems Design 15

direction of rotation

arm

Disk Structure

Multi-surface disk

read/write heads v
cylinder

—
direction of movement

A cylinder is the collection of all
the same tracks across all the
multiple disk surfaces.

There is a time associated with
turning heads on and off so that a

different surface can be accessed.

We call this overhead the head-
switching time.

The time to move the arm to read
another cylinder is due to the
mechanics of the arm. Itis
certainly much large than the
head-switching time, which is due
to electronics only.

Question: How should one
organize data across multiple
surfaces to minimize access
overhead?

CSCI 315 Operating Systems Design

16

