
1

CSCI 315 Operating Systems Design 1

File Systems Implementation
-- Part 2

Notice: The slides for this lecture have been largely based on Professor Perrone’s notes. Revised by
Xiannong Meng.

inode in Linux/Unix

• File control blocks in Linux are called
inode (has nothing to do with Apple)
meaning index node.

http://www tldp org/LDP/tlk/ds/ds html– http://www.tldp.org/LDP/tlk/ds/ds.html

• Each file in Linux has a unique control
block (inode)
– “ls -i” shows the inode number of the files

– “stat file_name” shows inode number and
other information

CSCI 315 Operating Systems Design 2

Linux File System Structure

CSCI 315 Operating Systems Design 3
http://www.learnlinux.org.za/courses/build/internals/ch08s04.html

Linux inode Structure

CSCI 315 Operating Systems Design 4

http://www.csie.ntu.edu.tw/~pangfeng/System%20Programming/Lecture_Note_2.htm

In-Memory File System Structures

file open

CSCI 315 Operating Systems Design 5

file read

Per-process
open-file table
part of PCB

An Example

• Consider ‘open(“hello.txt”, O_RDONLY)’ in
– http://www.eg.bucknell.edu/~cs315/2013-fall/code-

examples/files/file-stream.c

• Where does the file “hello.txt” reside?

• On a remote computer!
– unixspace.eg.bucknell.edu

– Use “df” to find out

• Implication?

• File system has to work with networked files

CSCI 315 Operating Systems Design 6

2

Virtual File Systems

• Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems.

• VFS allows the same system call interface (the

CSCI 315 Operating Systems Design 7

API) to be used for different types of file
systems.

• The API is to the VFS interface, rather than any
specific type of file system.

Schematic View of Virtual File
System

same API for
all file system
types

CSCI 315 Operating Systems Design 8

ext3 FAT 32 NFS

yp

Virtual File System Implementation

• For example, Linux has four object types:
– inode, file, superblock, dentry

• VFS defines set of operations on the objects that must
be implemented, inode -> vnode
– Every object has a pointer to a function table– Every object has a pointer to a function table

• Function table has addresses of routines to implement that function
on that object

• For example:
• int open() -- Open a file

• int close() -- Close an already-open file

• ssize t read() -- Read from a file

• ssize t write() -- Write to a file

• int mmap() -- Memory-map a file

Directory Implementation

• Linear list of file names with pointer to the data
blocks:
– simple to program, but…

The directory is a symbol table that maps file names to file control block which
has pointers that lead to the blocks comprising a file.

CSCI 315 Operating Systems Design 10

p p g

– time-consuming to execute.

• Hash Table:
– decreases directory search time,

– collisions – situations where two file names hash to
the same location,

– fixed size.

Linux dirent.h

struct dirent {
ino_t d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d type; /* type of file; not

CSCI 315 Operating Systems Design 11

unsigned char d_type; / type of file; not
supported by all file
system types */

char d_name[256]; /* filename */
};

Code Example to Access Directories
dirp = opendir(dname);
if (dirp != NULL) { // it is a directory

printf("directory : %s\n",dname);
for (dp = readdir(dirp); NULL != dp; dp = readdir(dirp)) {

printf("%s\n", dp->d_name);
print_ftype(dp->d_type);

}
closedir (dirp); }

[xmeng@polaris files]$./a.out ./
directory : ./
name: [.] type: [directory]

CSCI 315 Operating Systems Design 12

name: [..] type: [directory]
name: [file-test.c] type: [regular]
name: [list_dir.c] type: [regular]
name: [hello.txt] type: [regular]
name: [file-stream.c] type: [regular]
name: [a.out] type: [regular]
name: [test] type: [directory]
name: [list_dir.c~] type: [regular]
[xmeng@polaris files]$

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/files/list_dir.c

3

Allocation Methods

An allocation method refers to how disk
blocks are allocated for files. We’ll discuss
three options:

CSCI 315 Operating Systems Design 13

Contiguous allocation,

Linked allocation,

Indexed allocation.

Disk Structure

sector

read/write head

direction of rotation

direction of movement

Points to consider:

Sector sizes (number of bits
per sector) are fixed in most
disks, which means the
data density is lower on
outside tracks.

Newer formats, e.g., zone-
bit-recording uses variable

CSCI 315 Operating Systems Design 14

track

arm

bit recording, uses variable
size sectors so sectors
have similar data density.

The disk rotates at a
constant speed. To find a
block, the head is moved to
the appropriate track, and
then the correct sector is
found as the disk rotates. Organization of a disk surface

Disk Structure

sector

read/write head

direction of rotation

direction of movement

The disk rotation is given in
rotations per minute (RPM).

The time to find a track is
proportional to the distance
the head must travel.

The average time to find a
sector within a track is
roughly half the time for a

CSCI 315 Operating Systems Design 15

track

arm

g y
full rotation.

Question: If the time to
move from track i to track
(i+1) is given by ,
assuming that the disk head
is at track 0 (all the way
out), could you calculate the
time to get to sector 4 in
track 5?

Organization of a disk surface

Disk Structure

direction of rotation

Multi-surface disk A cylinder is the collection of all
the same tracks across all the
multiple disk surfaces.

There is a time associated with
turning heads on and off so that a
different surface can be accessed.
We call this overhead the head-
switching time.

CSCI 315 Operating Systems Design 16

direction of movement

arm

read/write heads
cylinder

The time to move the arm to read
another cylinder is due to the
mechanics of the arm. It is
certainly much large than the
head-switching time, which is due
to electronics only.

Question: How should one
organize data across multiple
surfaces to minimize access
overhead?

