
CSCI 315 Operating Systems Design 1

I/O Systems
Part 3

Notice: The slides for this lecture have been largely based on those accompanying the textbook
Operating Systems Concepts, 9th edition by Silberschatz, Galvin, and Gagne (2013). Many, if not all,
of the illustrations contained in this presentation come from this source. Revised by Xiannong Meng
based on Professor Perrone’s notes.

CSCI 315 Operating Systems Design 2

Block and Character Devices
• Block devices include disk drives.

– Commands include read, write, seek.
– Raw I/O or file-system access.
– Memory-mapped file access possible.

• Character devices include keyboards,

mice, serial ports.
– Single character (byte) input and output
– Libraries layered on top allow line editing.

CSCI 315 Operating Systems Design 3

Network Devices
• Different enough from block and character to

have their own interface.

• Unix/Linux and Windows NT/9x/2000 include
socket interface:
– Separates network protocol from network operation.
– Includes select functionality.

• Approaches vary widely (pipes, FIFOs, streams,

queues, mailboxes).

CSCI 315 Operating Systems Design 4

Clocks and Timers

• Provide current time, elapsed time, timer.

• If programmable interval time used for
timings, periodic interrupts.

• ioctl (on UNIX/Linux) covers odd
aspects of I/O such as clocks and timers.

CSCI 315 Operating Systems Design 5

Blocking and Nonblocking I/O
• Blocking - process suspended until I/O completed.

– Easy to use and understand.
– Insufficient for some needs.

• Nonblocking - I/O call returns as much as available.
– User interface, data copy (buffered I/O).
– Implemented via multi-threading.
– Returns quickly with count of bytes read or written.

• Asynchronous - process runs while I/O executes.
– Difficult to use.
– I/O subsystem signals process when I/O completed.

Code example: select

CSCI 315 Operating Systems Design 6

fd_set readmask; /* a bit-mask to represent active devices */
int maxfdp; /* maximum number of devices to check */
int nfound; /* number of devices found to have data */

/* initialize the read mask */
FD_ZERO(&readmask);

/* we will be checking standard input (file 0) and the network (file sock) */
/* both the keyboard and the network socket is assumed ready */
FD_SET(0, &readmask);
FD_SET(sock, &readmask);

nfound = select(maxfdp, &readmask, (fd_set *)0, (fd_set*)0, (struct timeval *)0);

if (FD_ISSET(0, &readmask)) { /* do keyboard reading */ }
if (FD_ISSET(sock, &readmask)) { /* do network reading */}

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/select.c

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/select.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/select.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/select.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/select.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/select.c

Code example: ioctl

CSCI 315 Operating Systems Design 7

struct termio savetty;
struct termio * newtty;
…
/* retrieve tty attributes */
if (ioctl(0, TCGETA, &savetty) != -1) { /* get tty attributes succeeds */}
…
/* save savetty to newtty, change newtty features */
…
/* set tty with new attributes */
if (ioctl(0, TCSETAF, newtty) != -1) { /* set attributes succeeds */ }

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/rawread.c

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/rawread.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/rawread.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/rawread.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/rawread.c
http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/rawread.c

Some of the termio attributes

• c_iflag: input attributes
• c_oflag: output attributes
• c_lflag: controls various terminal functions
• c_cc: specifies an array that defines the

special control character

CSCI 315 Operating Systems Design 8

Code example: tty

• How to use tty?
• In Linux/Unix, everything (device) is a file,

so are the terminals.
• We write to/ read from a terminal as if they

were regular files.

CSCI 315 Operating Systems Design 9

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/tty.c

http://www.eg.bucknell.edu/~cs315/2013-fall/code-examples/io/tty.c

	I/O Systems�Part 3
	Block and Character Devices
	Network Devices
	Clocks and Timers
	Blocking and Nonblocking I/O
	Code example: select
	Code example: ioctl
	Some of the termio attributes
	Code example: tty

