
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

Booting an Operating System

External reading This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone and other instructors.
Xiannong Meng, Fall 2021.

Steps in Booting an OS (1)
• Power on
• The BIOS (Basic I/O System) does the following

– Power On Self Test (POST) to check all hardware
– Find out the “booting drive” name

• It is configurable through BIOS, e.g., USB, CD-ROM, hard-disk
…

– Read and execute the program at the boot sector
from the booting drive (a 512 byte program)
• This program is usually called the bootstrap program.
• It is written in assembly. (why?)

Steps in Booting an OS (2)

• The bootstrap program does a number of things
– Set up registers so that memory can be separated into

segments such as code, data, heap, and stack.
– Initialize register values so that proper memory

addresses can be computed.
– Set up the partition table for the booting device.
– Read the rest of the operating system program into

memory from the booting device and start running
the operating system.

Examining Two Bootstrap Examples

• Let’s look at two simple, working, but incomplete
bootstrap examples.

– “boot_demo.asm” which does nothing at the end
of the startup.

– “hello_world_bootable_mem_mapped.asm”
which prints a “hello world” message through a
memory-mapped buffer.

Executing the Examples

• These programs can run on a real x86 machine or on an
emulator.

• We’ll run them on an emulator, bochs. The following are
the screenshots of these two programs in execution.

• Read the “readme.txt” and “Makefile” in the directory of
http://www.eg.bucknell.edu/~cs315/F2021/meng/code/
boot for details.

• Go to the directory, compile, and run the program.

http://www.eg.bucknell.edu/~cs315/F2020/meng/code/boot
http://www.eg.bucknell.edu/~cs315/F2020/meng/code/boot

Compile and Run Bochs Emulator

“boot_demo” that does nothing

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/boot/boot_demo.asm

https://www.cs.bham.ac.uk/~exr/lectures/opsys/10_11/lectures/os-dev.pdf

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/boot/boot_demo.asm
https://www.cs.bham.ac.uk/~exr/lectures/opsys/10_11/lectures/os-dev.pdf
https://www.cs.bham.ac.uk/~exr/lectures/opsys/10_11/lectures/os-dev.pdf
https://www.cs.bham.ac.uk/~exr/lectures/opsys/10_11/lectures/os-dev.pdf

“hello_world_bootable”

Printed by the
bootstrap program

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/boot/hello_world_bootable.asm

Original from: https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/boot/hello_world_bootable.asm
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/
https://thiscouldbebetter.wordpress.com/2011/03/15/creating-a-bootable-program-in-assembly-language/

“hello_world_mem_mapped”

Printed by our
bootstrap program,
screen cleared.

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/boot/hello_world_bootable_mem_mapped.asm

Original from: https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/boot/hello_world_bootable_mem_mapped.asm
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/
https://thiscouldbebetter.wordpress.com/2011/03/17/displaying-text-in-assembly-without-interrupts/

Four Key Features

1. The program must reside at the boot sector of the
booting device, e.g., a disk, a CD, or a USB drive.

2. The size of the program must be 512 bytes.

3. The 511th byte must have the value of 0x55 and
512th bytes 0xAA.

4. The program must be in an infinite loop.

Simplest Bootstrap Program

boot_demo.asm

Logic Structure of Boot Loader

MBR: Master Boot Record

code size

total size

Partition Table Entry

• Each of the four partition table entry is a 16-byte
value, indicating how the device (disk) is partitioned.

https://en.wikipedia.org/wiki/Master_boot_record#PTE

https://en.wikipedia.org/wiki/Master_boot_record

Booting up the OS

•BIOS is firmware (flash memory). Power on self tests (POST) check if
machine is in shape to run.

•Every bootable disk has an MBR, which contains a bootstrap
program and a partition table. Each partition has a boot sector with
the boot loader.

Source: http://duartes.org/gustavo/blog/post/how-computers-boot-up/

http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/

