
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

Processes: Concepts and their Creation

Ch 3 This set of notes is based on notes from the textbook 
authors, as well as L. Felipe Perrone, Joshua Stough, and 
other instructors.
Xiannong Meng, Fall 2021.



We discuss the basic concept and creation of a 
process first, other topics later to fit the lab 

schedule.



OS Services The entire blue area 
is operating system.



Unix Structure



System Calls and the OS

$ man 2 open

Take the “open()” call 
as an example.



System Calls and Libraries

$ man 3 printf

“printf()” is a C library 
function.



Process Concept

• Process – a program in 

execution; the code in a 

process executes 
sequentially.

• A process includes:

– program counter, 

– code,

– stack,

– heap,

– data section.

heap

stack

data

code

program counter

Memory
Map

PC



All processes in Unix are created through fork()



Forking
(yeah, it’s a thing, a Unix thing)

fork();

Location
where fork()
is called.

Flow of execution



Forking
(yeah, it’s a thing, a Unix thing)

fork();

fork();

parent 
process

child 
process

Location
where fork()
is called.

Location
where fork()
is called.

Note that the child 
process and the 
parent process are 
identical at the 
moment of calling 
fork(). They differ 
when execution 
starts.



pid = fork();

int pid;

parent

Forking
(what that return value is for)

Location
where fork()
is called.



pid = fork();

int pid;

parent

child

pid = fork();

int pid;

what’s the value of pid?

what’s the value of pid?

Forking
(what that return value is for)



Using fork safely
int pid;

…

pid = fork();

if (0 != pid) {

// code of the parent

…

} else { 

// code of the child

…

}

…



Using fork safely
int pid;

…

pid = fork();

if (0 != pid) {

// code of parent P

…

} else { 

// code of child C

…

}

…

P

C



Using fork safely
int pid1, pid2;

pid1 = fork();

if (0 != pid1) {

// code of parent P

…

} else {

pid2 = fork(); 

// code of child C1

if (0 != pid2) {

// more code of child C1, parent of C2

…

} else {

// code of child C2

…

}

P

C1

C2



Using fork even more safely
int pid;

pid = fork();

if (-1 == pid) {

// error handling

…

} else if (0 != pid) {

// code of parent P

…

} else { 

// code of child C

…

}

P

C



Joining processes in Unix



Waiting
(the inverse of forking)

wait(&s);

int s;

parent

child

int s;

exit(0);



Waiting
(the inverse of forking)

wait(&s);

int s;

parent

child

int s;

exit(0);

parent 
waits

child 

execute
s



Waiting
(the inverse of forking)

wait(&s);

int s;

parent

child

int s;

exit(0);

parent 
waits

child 

complete
d



Waiting
(the inverse of forking)

wait(&s);

int s;

parent

parent 
continues


