CSCI315 - Operating Systems Design

Department of Computer Science
Bucknell University

Processes: Concepts and their Creation

ch 3 This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough, and

other instructors.

Xiannong Meng, Fall 2021.

We discuss the basic concept and creation of a
process first, other topics later to fit the lab
schedule.

OS Services

The entire blue area
is operating system.

user and other system programs

%

GUI batch command line
user interfaces
system calls
program I/O file I resource .
execution operations systems BorUniealiol allocation aesening
error pro;?]%tlon
detection _ security
services

operating system

hardware

Unix Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

= signals terminal file system CPU scheduling

g J handling swapping block I/O page replacement

g character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Take the “open()” call

as an example.

open ()
user

System Calls and the OS

user application
j

mode
system call interface
kernel
mode A
3 open ()
Implementation
i » of open ()

system call

return

System Calls and Libraries

“printf()” is a C library
function.

\{

usear

#include =stdio.h>
int main ()

rintf {"Greetings");

BEET R EGR

return 0;

}

mode
kernel

standard C library

mode
write ()
S e S

'd write [)

1
\ system call

L

$ man 3 printf

Process Concept

* Process — a program in
execution:; the code in a

stack

process executes
sequentially.

« A process includes:

heap

— program counter,

data

Memory
Map

— code,
program counter
— stack,
STV 41
— heap,

code

— data section.

All processes in Unix are created through fork ()

stough@gauss: ~
File Edit View Search Terminal Help

FORK(2) Linux Programmer's Manual FORK(2)

NAME
fork - create a child process

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork() creates a new process by duplicating the calling process. The new
process is referred to as the process. The calling process is referred
to as the process.

The <child process and the parent process run in separate memory spaces. At
the time of fork() both memory spaces have the same content. Memory writes,
file mappings (mmap(2)), and unmappings (munmap(2)) performed by one of the
processes do not affect the other.

The child process is an exact duplicate of the parent process except for the
following points:

The child has its own unique process ID, and this PID does not match the ID
of any existing process group (setpgid(2)) or session.

The child's parent process ID is the same as the parent's process ID.

The child does not inherit its parent's memory locks (mlock(2), mlock-
all(2)).

Manual page fork(2) line 1 (press h for help or q to quit)]j

Forking
(yeah, it's a thing, a Unix thing)

Flow of execution

Location
where fork()
is called.

Forking
(yeah, it's a thing, a Unix thing)

parent
process
Note that the child
Location process and the
where fork() parent process are
4 Al i identical at the

moment of calling
fork(). They differ
when execution
starts.

Location
where fork()
is called.

Forking

(what that return value is for)

parent

Location
where fork()
is called.

Forking

(what that return value is for)

parent

3 i ot o o

pid = fork();

® - i tin SR L
s 2 Ol p1d pld = fO]fk(),
®

Using fork safely

int pid;

pid = fork();
if (0 '= pid) {
// code of the parent

} else {
// code of the child

Using fork safely

int pid;

pid = fork();
if (0 !'= pid) {
// code of parent P

} else {
// code of child C A

Using fork safely

int pidl, pid2;
pidl = fork();
if (0 '= pidl) {
// code of parent P

} else {
pid2 = fork() ;
// code of child C1
if (0 '= pid2) {
// more code of child Cl, parent of C2

} else {
// code of child C2

Using fork even more safely

int pid;
pid = fork();
if (-1 == pid) {

// error handling

} else if (0 !'= pid) {
// code of parent P

} else {
// code of child C

Joining processes In Unix

stough@gauss: ~
File Edit View Search Terminal Help

Linux Programmer's Manual WAIT(2)

wait, waitpid, waitid - wait for process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int * e
pid_t waitpid(pid_t , int * , int e
int waitid(idtype_t , id_t , siginfo_t * , int e

/* This is the glibc and POSIX interface; see
NOTES for information on the raw system call. */

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

waitid():
Since glibc 2.26: XOPEN SOURCE >= 500 ||
_POSIX C SOURCE >= 200809L
Glibc 2.25 and earlier:
_XOPEN_SOURCE
| /7* Since glibc 2.12: */ POSIX C SOURCE >= 200809L
|| /* Glibc versions <= 2.19: */ BSD SOURCE

DESCRIPTION

All of these system calls are used to wait for state changes in a child of the
calling process, and obtain information about the <child whose state has
Manual page wait(2) line 1 (press h for help or g to quit)]]

Waiting
(the inverse of forking)

parent

\

child

parent
waits

Waiting

(the inverse of forking)

parent

child
execute
S

Waiting

(the inverse of forking)

parent

|

parent
waits

» walt (&s) ;

l

child
complete
d

Waiting

(the inverse of forking)

parent

parent
continues

