
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

Inter-Process Communications: Unix Pipes

Ch 3.7.4 This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough, and
other instructors.
Xiannong Meng, Fall 2021.

Interprocess Communication (IPC)

• Mechanism for processes to communicate
and to synchronize their actions
• Message system – processes communicate

with each other through messages without
resorting to shared variables
• IPC facility provides two operations:

– send(message) – message size fixed or variable

– receive(message)

• If processes P and Q wish to communicate, they need
to:

– establish a communication link between them

– exchange messages via send/receive

Implementation Questions

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of
communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate
fixed or variable?

• Is a link unidirectional or bi-directional?

• We will examine one implementation first, Unix Pipes.

Unix pipe(2)

-Point to point

-Unidirectional

-Reliable delivery

-Stream of bytes

-FIFO
-For processes related by birth (same computer)

-Virtually identical to reading and writing to a file (low

level file I/O)

Unix pipe(2)

P0

0

1

2

integer IDs for

open files

In a process P0

stdin

stdout

stderr

Before creating a child with whom it will

communicate, the parent creates a pipe through
system call pipe().

int p2c[2];

int pipe_ret;

pid_t pid;

Unix pipe(2)

P0

0

1

2

open

files

stdin

stdout

stderr

p2c[0]

p2c[1]

p2c is int array of 2. If call to pipe(2)

succeeds, the p2c values should be

3 and 4, continuing from the
existing open file IDs.

3

4

pipe_ret = pipe(p2c);

if (pipe_ret == -1)

// error

...

p2c[0]

p2c[1]

Unix pipe(2)

P0

0

1

2

open

files

stdin

stdout

stderr

p2c[0]

p2c[1]

Then… it creates

child P1 with fork

3

4

pid = fork();

if (pid < 0)

// error

...

p2c[0]

p2c[1]

Unix pipe(2)

P0
p2c[0]

p2c[1]

int p2c[2];

P1
p2c[0]

p2c[1]

Int p2c[2];

P1’s local copy with

values inherited

from P0

else if (pid > 0) {

// P0

} else { // child

// P1

}

Unix pipe(2)

P0
p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

P0 closes the read end

of the pipe (index 0)

P1 closes the write end

of the pipe (index 1)

Unix pipes are unidirectional, read from p[0] and
write to p[1]

P0 and P1 each have a pair of pipes, p2c[0] and
p2c[1]

Unix pipe(2)

P0
p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

P0 closes the read end

of the pipe (index 0)

P1 closes the write end

of the pipe (index 1)

Setting up for P0 to write to P1 …

Unix pipe(2)

P0 writes to file

descriptor p2c[1]
P1 reads from file

descriptor p2c[0]

P0
p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

write(p2c[1], buf, size); read(p2c[0], buf, size);

How to revise the setup such that P0 and P1 can write to each other?

Setting up for P0 to write to P1 …

Synchronization

• Message passing may be either blocking or non-
blocking.

• Blocking is considered synchronous:
– Blocking send has the sender blocked until the message is received.

– Blocking receive has the receiver blocked until a message is available.

• Non-blocking is considered asynchronous
– Non-blocking send has the sender send the message and continue.

– Non-blocking receive has the receiver receive a valid message or null.

Buffering

Queue of messages attached to the link;

implemented in one of three ways:

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages.

Sender must wait if buffer is full.

3. Unbounded capacity – infinite length. Sender

never waits.

Many IPC Mechanisms

• File

• Pipe

• Named pipe

• Shared memory

• Message passing

• Mailbox

• Remote procedure calls

• Sockets (TCP, datagram)

• What are the
properties of each?

• What are the

advantages and

disadvantages of
each?

• How do you select
one to use?

IPC Properties

• Buffering

• Capacity

• Synchronization

• Service model

• Shared memory

• Direct or indirect

