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Interprocess Communication (IPC)

• Mechanism for processes to communicate 
and to synchronize their actions
• Message system – processes communicate 

with each other through messages without 
resorting to shared variables
• IPC facility provides two operations:

– send(message) – message size fixed or variable 

– receive(message)

• If processes P and Q wish to communicate, they need 
to:

– establish a communication link between them

– exchange messages via send/receive



Implementation Questions

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of 
communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate 
fixed or variable?

• Is a link unidirectional or bi-directional?

• We will examine one implementation first, Unix Pipes.



Unix pipe(2)

-Point to point

-Unidirectional

-Reliable delivery

-Stream of bytes

-FIFO
-For processes related by birth (same computer)

-Virtually identical to reading and writing to a file (low 

level file I/O)



Unix pipe(2)

P0

0

1

2

integer IDs for 

open files

In a process P0
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Before creating a child with whom it will 

communicate, the parent creates a pipe through 
system call pipe().

int p2c[2]; 

int pipe_ret;

pid_t pid;



Unix pipe(2)
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p2c is int array of 2. If call to pipe(2) 

succeeds, the p2c values should be 

3 and 4, continuing from the 
existing open file IDs.
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pipe_ret = pipe(p2c);

if (pipe_ret == -1) 

// error

...

p2c[0]

p2c[1]



Unix pipe(2)
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Then… it creates 

child P1 with fork
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pid = fork();

if (pid < 0) 

// error

...

p2c[0]

p2c[1]



Unix pipe(2)

P0
p2c[0]

p2c[1]

int p2c[2];

P1
p2c[0]

p2c[1]

Int p2c[2];

P1’s local copy with 

values inherited 

from P0

else if (pid > 0) {

// P0

} else {  // child

// P1

}



Unix pipe(2)
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p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

P0 closes the read end 

of the pipe (index 0)

P1 closes the write end 

of the pipe (index 1)

Unix pipes are unidirectional, read from p[0] and 
write to p[1]

P0 and P1 each have a pair of pipes, p2c[0] and 
p2c[1]



Unix pipe(2)
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p2c[1]

P0 closes the read end 

of the pipe (index 0)

P1 closes the write end 

of the pipe (index 1)

Setting up for P0 to write to P1 …



Unix pipe(2)

P0 writes to file 

descriptor p2c[1]
P1 reads from file 

descriptor p2c[0]

P0
p2c[0]

p2c[1]
P1

p2c[0]

p2c[1]

write(p2c[1], buf, size); read(p2c[0], buf, size);

How to revise the setup such that P0 and P1 can write to each other?

Setting up for P0 to write to P1 …



Synchronization

• Message passing may be either blocking or non-
blocking.

• Blocking is considered synchronous:
– Blocking send has the sender blocked until the message is received.

– Blocking receive has the receiver blocked until a message is available.

• Non-blocking is considered asynchronous
– Non-blocking send has the sender send the message and continue.

– Non-blocking receive has the receiver receive a valid message or null.



Buffering

Queue of messages attached to the link; 

implemented in one of three ways:

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages. 

Sender must wait if buffer is full.

3. Unbounded capacity – infinite length. Sender 

never waits.



Many IPC Mechanisms

• File

• Pipe

• Named pipe

• Shared memory

• Message passing

• Mailbox

• Remote procedure calls

• Sockets (TCP, datagram)

• What are the 
properties of each?

• What are the 

advantages and 

disadvantages of 
each?

• How do you select 
one to use?



IPC Properties

• Buffering

• Capacity

• Synchronization

• Service model

• Shared memory

• Direct or indirect


