
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

Introduction to Thread

Ch 4.1 – 4.3 This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough, and
other instructors.
Xiannong Meng, Fall 2021.

A Different Model for Process
Communication

• We discussed IPC with message passing, e.g., pipes

– We will learn another form of message passing, sockets, later

• In message passing, the communicating processes are running in
different context (as in different processes), thus passing
information is slower;

• In shared memory, IPC is faster. However, we need to set up the
shared memory.

– We didn’t quite discuss this topic

• In this segment, we explore a different model for processes to
communicate with shared memory, that is, using threads.

•Shared code
•Shared data
•Shared heap
•Independent PC
•Independent registers
•Independent stack

What Is A Thread?

A thread is a light-weight process.

Compared to: a process is a program in execution. Each process has
its independent code, data, heap, PC, registers, and stack.

In memory, just like processes

Process and Thread

code

data

heap

Stack
PC
Reg’s

shared

Stack
PC
Reg’s

Stack
PC
Reg’s

per- thread

Thread 1 Thread 2 Thread 3

A process

Example: A process that contains three threads.
A traditional process can be considered as a process
with a single thread.

Why Threads?

• Consider the following two examples, operations can take place in
parallel, we did them in CSCI 206
– Matrix addition: A = B + C
– Selection sort

• Advantages of using threads
– Responsiveness: multiple threads can be executed in parallel, reducing the

completion time needed for a problem
– Resource sharing: multiple threads have access to the same data, sharing

made easier
– Economy: creating process (allocating memory and other resources) is costly.

For the same number of execution units, threads are less expensive
– Scalability: thread model can be easily scaled up

POSIX Threads

• While threads can be implemented in many different
ways, the POSIX thread is a popular and effective
implementation of threads on UNIX-like system

• POSIX: Potable Operating Systems Interface

A Simple, Complete Thread Example

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

Call the function
with parameters

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

8

The Thread Work: sleeping()

Cast param to proper type

Returns thread ID

9

Compile and Execute the Program
[xmeng@linuxremote]$ gcc -o thread-sleep trd-sleep.c –lpthread

[xmeng@linuxremote]$./thread-sleep

thread 140550497642240 sleeping 3 seconds ...

thread 140550518621952 sleeping 3 seconds ...

thread 140550508132096 sleeping 3 seconds ...

thread 140550476662528 sleeping 3 seconds ...

thread 140550487152384 sleeping 3 seconds ...

thread 140550497642240 awakening

thread 140550518621952 awakening

thread 140550508132096 awakening

thread 140550487152384 awakening

thread 140550476662528 awakening

main() reporting that all 5 threads have terminated

[xmeng@linuxremote]$

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

Creating Threads
#include <pthread.h> Including the pthread library headers

Creating threads Thread ID Thread attributes, NULL for now

Name of thread
worker functionPointer to the parameter

block

As soon as threads are created, they start to execute the worker function

Joining Threads When Finishing

pthread_join(tid[i], NULL);

Function to join
the threads

ID of the thread
expected to join

Pointer to
return parameters

The second parameter is of the type void **ptr, which is
an address to a pointer (pointer to a pointer). If it is used,
usually it returns the exit status of the thread.

Think about the “join” here vs “wait” in process.

Review of necessary C knowledge, pointers,
function parameters, and others

Pointer Recap
NAME

wait, waitpid, waitid - wait for process to change state

SYNOPSIS

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *wstatus);

pid_t waitpid(pid_t pid, int *wstatus, int options);

In the parameter list, int *wstatus , the variable wstatus

is a pointer to an integer variable. A pointer in C is basically a
memory address. To access the content of the, the pointer has to
be dereferenced, the following are valid.

int k = *wstatus; // value at mem address wstaus assigned to k

wstatus = &k; // wstatus takes the mem address of k

Pointer Recap

int ret_val;

int *status;

.

.

.

ret_val = wait(status);

.

.

.

int ret_val;

int status;

.

.

.

ret_val = wait(&status);

.

.

.

● Do both options compile correctly?

● Do both options run correctly?

● Can you explain what each one does?

Function Recap

int summation(int start, int end);

Function Prototype

return type

function

name

formal arguments,

a.k.a., parameters

Function As Parameter(s)

int add(int a, int b); // a + b

Function Prototypes

int f(int, int);

Function Declaration

int sub(int a, int b); // a - b

Function as Parameter(s)

int compute(int, int, int g(int, int));

Function prototype

int compute(int a, int b, int g(int, int))

{

return g(a, b);

}

Function body that uses function parameter(s)

int x = compute(3, 4, add); // 3 + 4 => 7

int y = compute(3, 4, sub); // 3 – 4 => -1

