CSCI315 - Operating Systems Design

Department of Computer Science
Bucknell University

Introduction to Thread

Ch4.1-4.3 This set of notes is based on notes from the textbook
' ' authors, as well as L. Felipe Perrone, Joshua Stough, and

other instructors.
Xiannong Meng, Fall 2021.

A Different Model for Process
Communication

We discussed IPC with message passing, e.g., pipes
— We will learn another form of message passing, sockets, later

In message passing, the communicating processes are running in
different context (as in different processes), thus passing
information is slower;

In shared memory, IPC is faster. However, we need to set up the
shared memory.

— We didn’t quite discuss this topic

In this segment, we explore a different model for processes to
communicate with shared memory, that is, using threads.

What Is A Thread?

A thread is a light-weight process.

*Shared code
eShared data i|> In memory, just like processes

*Shared heap
°Independent PC
*Independent registers
*Independent stack

Compared to: a process is a program in execution. Each process has
its independent code, data, heap, PC, registers, and stack.

Process and Thread

Example: A process that contains three threads.
A traditional process can be considered as a process

with a single thread.

A process

Thread 1 Thread 2 Thread 3
per- thread Stack Stack Stack
PC PC PC
Reg’s Reg’s Reg’s
heap
shared | = data

code

—_—

Why Threads?

* Consider the following two examples, operations can take place in
parallel, we did them in CSCl 206

— Matrix addition: A=B + C
— Selection sort

e Advantages of using threads

— Responsiveness: multiple threads can be executed in parallel, reducing the
completion time needed for a problem

— Resource sharing: multiple threads have access to the same data, sharing
made easier

— Economy: creating process (allocating memory and other resources) is costly.
For the same number of execution units, threads are less expensive

— Scalability: thread model can be easily scaled up

POSIX Threads

 While threads can be implemented in many different
ways, the POSIX thread is a popular and effective
implementation of threads on UNIX-like system

* POSIX: Potable Operating Systems Interface

A Simple, Complete Thread Example

/* gcc thisfile.c -1lpthread */
#include <stdio.h>
#include <pthread.h>

#define NUM THREADS 5
int SLEEP TIME = 3;
void *sleeping(void *); /* thread routine */

int main(int argc, char *argv[]) {

int 1i;
pthread t tid[NUM THREADS]; /* array of thread IDs */

for (1 = 0; 1 < NUM THREADS; i+s)

pthread create(&tid[i], NULL, sleeping,

(void *)&SLEEP_TIME),

for (1 = 0; 1 < NUM THREADS; i++)

pthread join(tid[i], NULL);
printf("main() reporting that all %d threads have terminated\n", 1i);
return (0);

} /* main */

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

The Thread Work: sleeping()

Cast param to proper type

void * sleeping(void *arg) {

int sleep time = (*(int *)arg);
printf(“thread %ld sleeping %d seconds ...\n", pthread self(), sleep time);

sleep(sleep time);
printf("\nthread %ld awakening\n", pthread self());
return (NULL);

Compile and Execute the Program

[xmeng@linuxremote]$ gcc -o thread-sleep trd-sleep.c —Ipthread
[xmeng@linuxremote]$./thread-sleep

thread 140550497642240 sleeping 3 seconds ...
thread 140550518621952 sleeping 3 seconds ...
thread 140550508132096 sleeping 3 seconds ...
thread 140550476662528 sleeping 3 seconds ...
thread 140550487152384 sleeping 3 seconds ...
thread 140550497642240 awakening

thread 140550518621952 awakening

thread 140550508132096 awakening

thread 140550487152384 awakening

thread 140550476662528 awakening

main() reporting that all 5 threads have terminated
[xmeng@linuxremote]$

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

9

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

Creating Threads

#include <pthread.h> Including the pthread library headers

pthread create(&tid[i], NULL, sleeping,

(void *)&SLEEP TIME);

Creating threads TW D Thread attrib!tes, NULL for now

|
Name of thread
Pointer to the parameter worker function
block

As soon as threads are created, they start to execute the worker function

Joining Threads When Finishing

pthread_join(tid[i], NULL);
\

ID of the thread Pointer to
expected to join return parameters

Function to join
the threads

The second parameter is of the type void **ptr, which is

an address to a pointer (pointer to a pointer). If it is used,
usually it returns the exit status of the thread.

Think about the “join” here vs “wait” in process.

Review of necessary C knowledge, pointers,
function parameters, and others

Pointer Recap

/hAME
wait, waitpid, waitid - wait for process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid t wait(int *wstatus);

pid t waitpid(pid_t pid, int *wstatus, int options);

In the parameter list, int *wstatus, the variable wstatus
is a pointer to an integer variable. A pointer in C is basically a
memory address. To access the content of the, the pointer has to
be dereferenced, the following are valid.

int k = *wstatus; // value at mem address wstaus assigned to k
wstatus = &k; // wstatus takes the mem address of k

Pointer Recap

4 4
int ret_val; int ret_val;
int *status; int status;
ret val = wait(status); i ret val = wait(&status);

® Do both options compile correctly?
® Do both options run correctly?
® Can you explain what each one does?

Function Recap

Function Prototype

return type

formal arguments,
function a.k.a., parameters

name

Function As Parameter(s)

Function Prototypes
int add(int a, int b); // a + b

int sub(int a, int b); // a - b

Function Declaration

int £(int, int); t

Function as Parameter(s)

Function prototype

int compute (int, int, int g(int, int));

Function body that uses function parameter(s)

g
int compute (int a, int b, int g(int, int))

{

return g(a, b);

}

compute (3, 4, add); // 3 + 4 => 17

compute (3, 4, sub); // 3 - 4 => -1

