
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

Pthread Construct

Ch 4.4-4.6

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough, and
other instructors.
Pthread programming information is also from the
tutorial by Blaise Barney from Lawrence Livermore
National Lab. Xiannong Meng, Fall 2021.

https://computing.llnl.gov/tutorials/pthreads/

An Example of Shared Data
/* COMPILE WITH: gcc trd-share.c -lpthread -o trd-share */

#include <stdio.h>

#include <pthread.h>

#define NUM_THREADS 5

void *work(void *); /* thread routine */

int v = 0; /* global variable, shared */

int main(int argc, char *argv[]) {

int i;

pthread_t tid[NUM_THREADS]; /* array of thread IDs */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], NULL, work, NULL);

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

printf("main() reporting that all %d threads have terminated\n", i);

printf("v should be %d, it is %d\n", NUM_THREADS, v);

return (0);

} /* main */

Call a function
without parameters

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-share.c

A global
variable

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-share.c

The Worker Function and Result
void * work(void *arg) {

v ++; // ‘v’ is a global variable

return (NULL);

}

[xmeng@polaris thread]$./trd-share

main() reporting that all 5 threads have terminated

v should be 5, it is 5

[xmeng@polaris thread]$

Everything seems working fine. However if one increases the
number of threads to a larger value, e.g., 5000, we may see
something incorrect.

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-share.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-share.c

There May Be A Problem …
#define NUM_THREADS 5000 // everything else is the same

[xmeng@polaris thread]$./trd-share

main() reporting that all 5000 threads have terminated

v should be 5000, it is 4998

[xmeng@polaris thread]$

Who stole the two counts from me?!!

Why?

• How do we update the value of a variable?

• We learned that in CSCI 206
– lw t0, 0(s1) # load memory content at s1 to t0

– addi t0, t0, 1 # increment t0 by 1

– sw t0, 0(s1) # store content in t0 to memory at s1

• In a multi-thread and multi-process environment, before
finishing all three steps, a thread/process may be
interrupted and moved out of the CPU and memory,
leaving a inconsistent value for a shared variable

Two Threads/Processes Update the Same
Variable at the Same Time

v = 0;

load $t, v
Inc $t, 1

Thread 1

Tim
e lin

e

load $t, v
Inc $t, 1
Store $t

Thread 2

v = 1;

Store $t v = 1;

Interrupted, moved out CPU

Resumed, moved onto CPU

Where v should have been 2

How To Prevent Problems of This Kind?

• The phenomenon in the previous slide is called “race
condition,” --- the value of a variable depends on the
order of execution.

• Threads and processes need coordination. We will
discuss the topic in greater detail Chapter 5.

One More Example
/* COMPILE WITH: gcc trd-sleep.c -lpthread -o trd-sleep */

#include <stdio.h>

#include <pthread.h>

#define NUM_THREADS 5

int SLEEP_TIME = 3;

void *sleeping(void *); /* forward declaration to thread routine */

int main(int argc, char *argv[]) {

int i;

pthread_t tid[NUM_THREADS]; /* array of thread IDs */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], NULL, sleeping,(void *)&SLEEP_TIME);

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

printf("main() reporting that all %d threads have terminated\n", i);

return (0);

} /* main */

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

The sleeping() Function

void * sleeping(void *arg) {

int sleep_time = *((int*)arg); // cast, then dereference

printf("thread %ld sleeping %d seconds ...\n",

pthread_self(), sleep_time);

sleep(sleep_time);

printf("\nthread %ld awakening\n", pthread_self());

return (NULL);

}

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-sleep.c

How To Pass Parameter(s) to Worker

• In the two examples we have, one doesn’t have any
parameters to the worker function (work() where v is
incremented by 1); the other has one parameter
(sleeping()) to indicate the number of seconds to sleep.

• In general, the one parameter to a thread worker
function is the address where the parameters should
reside.

• What if we need multiple parameters?

Building Multi-Parameter Block
• What to use? C structures!
• Steps to take

– Define a C structure that can hold multiple pieces
of information

– Fill in the parameters
– Pass the address of the structure to the worker

function
– Extract return parameters, if any, from the pointer

to the structure

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-param.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/trd-param.c

Example of Parameters
struct param_t { /* a sample parameter structure */

int id; /* id and name are in params */

char * name;

int result; /* result is out param */

};

Define parameter
structures

for (k = 0; k < NUM_THREADS; k ++) {

param[k].id = k;

param[k].name = (char*)malloc(32);

strcpy(param[k].name, “hello”);

};

Preparing parameter
in structure

for (k = 0; k < NUM_THREADS; k ++) {

pthread_create(&tid[k], NULL, work, &(param[k]));

};

Create thread with
parameters

Compared to pthread_create(&tid[k], NULL, work, NULL);

Access and Return Parameters
void * work(void * arg) {

v ++; // v is a global variable

((struct param_t *)arg)->result = v; // set output parameter

return NULL;

}

The work() function
has access to the
parameters, so is the
calling function.

/* in main() after thread execution */

for (k = 0; k < NUM_THREADS; k ++) {

printf(“thread %d output value %d\n”,

param[k].id, param[k].result);

}

Access parameters
from calling function.

Execution Results

[xmeng@polaris thread]$./trd-param

main() reporting that all 5 threads have terminated

v should be 5, it is 5

output parameters in each thread

thread 0 output 1

thread 1 output 3

thread 2 output 2

thread 3 output 4

thread 4 output 5

[xmeng@polaris thread]$

Program output

Note that the
values and IDs in
this example are out
of order, not by design.
Why?

