
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

Threads, Multi-threads, and Processes

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough, and
other instructors.
Xiannong Meng, Fall 2021.

Ch 4.1 – 4.4

Now that we have seen how pthreads work in the
Linux system, let’s look back at the bigger picture of
threads and their relation with processes.

Some Common Questions
• Pthread is a specification that meets the POSIX (Portable Operating

Systems Interface) standard.

• How a thread library is implemented varies and we don’t need to worry

about it at this level, though we will discuss some high level concepts.

• There are other popular thread libraries, e.g., Windows Threads and Java

Threads.

• Kernel threads vs user threads.

– A kernel thread is managed by the OS directly, a user thread is managed by a user program (e.g., in a

library).

– The pthread library we use on the Linux system is a collection of API; each pthread is a user thread.

https://stackoverflow.com/questions/8639150/is-pthread-library-actually-a-user-thread-solution

https://stackoverflow.com/questions/8639150/is-pthread-library-actually-a-user-thread-solution

Processes and Threads
Shared among
threads

Thread
independent

Advantages of Threading

• Responsiveness: multiple threads can be executed in
parallel (in multi-core machines)

• Resource sharing: multiple threads have access to the
same data, sharing made easier

• Economy: the overhead in creating and managing
threads is smaller

• Scalability: more processors (or cores), more threads
running in parallel

5

Challenges in Parallel and
Multithreaded Programming

• Identifying tasks

• Load balance

• Data splitting

• Data dependency

• Testing and debugging

6

Multithreading Models

7

User threads

8

• Managed by a user library
• Runs at user level

Managed directly by the operating

system, thus called “kernel
threads”

Kernel threads

Many-to-One

• Many user-level threads mapped to single kernel thread

• One user thread blocking causes all to block

• Multiple threads may not run in parallel on multi-core
system because only one may be in kernel at a time

• Few systems currently use this model

• Examples:

– Solaris Green Threads

– GNU Portable Threads

One-to-One

• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted
due to overhead, imagining that your program tries to
create 100s of threads…

• Examples
– Windows

– Linux

Many-to-Many Model

• Allows many user level threads to be mapped
to many kernel threads

• Allows the operating system to create a
sufficient number of kernel threads

• Windows with the ThreadFiber package

• Otherwise not very common

https://docs.microsoft.com/en-us/windows/win32/procthread/fibers

https://docs.microsoft.com/en-us/windows/win32/procthread/fibers

Two-level Model

• Similar to M:M, except that it allows a
user thread to be bound to kernel thread

Shared Memory Model

Text

Data

Heap

Thread

1

Stack

Thread

2

Stack

Thread

n

Stack
...

• All threads have access to the same global, shared memory

• Threads also have their own private data (how? where?)

• Programmers are responsible for protecting globally shared

data

Thread Safeness

Thread

2

Thread

1

Thread

n
...

Library Storage

Thread Safeness

Thread

2

Thread

1

Thread

n
...

Thread 1 result

Library Storage

Library function (not thread-safe):

returns pointer to library storage

Thread Safeness

Thread

2

Thread

1

Thread

n
...

Thread 2 result Thread 1 result

Library Storage

Library function

(not thread-safe)

Thread Safeness

Thread

2

Thread

1

Thread

n
...

Library Storage

Thread 2 result

Uses pointer to get to results;

doesn’t see what it expected

Remember this example …
#define NUM_THREADS 5000 // everything else is the same

[xmeng@polaris thread]$./trd-share

main() reporting that all 5000 threads have terminated

v should be 5000, it is 4998

[xmeng@polaris thread]$

Who stole the two counts from me?!!

Implicit Threads - OpenMP

http://jakascorner.com/blog/2016/06/omp-for-reduction.html

sum = 0;

for (auto i = 0; i < 100; i++){

sum += a[i]

}

sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 100; i++) {

sum += a[i]

}

sumloc_1 = a[0] + ⋯ + a[33]

sumloc_2 = a[34] + ⋯ + a[66]

sumloc_3 = a[67] + ⋯ + a[99]

sum = sumloc_1 + sumloc_2 + sumloc_3

http://jakascorner.com/blog/2016/06/omp-for-reduction.html

A Simple Example
/* To compile, enter:
* gcc -fopenmp openmp.c -o openmp

*/
#include <omp.h>
#include <stdio.h>
int main(int argc, char *argv[]){

/* sequential code */
printf(“I am in a sequential area 1\n”);
#pragma omp parallel
{

printf("I am a parallel region\n");
}
/* sequential code */
printf(“I am in a sequential area 2\n”);
return 0;

}

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/openmp.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/openmp.c

Execution Result

[xmeng@polaris thread]$./openmp
I am a sequential region1
I am a parallel region
I am a parallel region
I am a parallel region
I am a parallel region
I am a sequential region2
[xmeng@polaris thread]$

Running the program with 4 threads

The number of threads in OpenMP can be set, either through
the call to omp_set_threads()or through the setting of
environment variable export OMP_NUM_THREADS=val
The default is 16.

A Example with Shared Data
/* To compile, enter: gcc -fopenmp openmp-m.c -o oenmp-m */

#include <omp.h>
#include <stdio.h>
int main(int argc, char *argv[]){

/* sequential code */
int v = 0; int tid; int nthreads;
#pragma omp parallel shared(v, nthreads) private(tid)
{

tid = omp_get_thread_num();
if (tid == 0) {

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
#pragma omp critical (addv)

{
v ++;

}
printf("I am a parallel region (thread id == %d)\n", tid);
}
/* sequential code */
printf("value of v = %d\n", v);
return 0;

}

h
ttp

://w
w

w
.eg.b

u
ckn

ell.ed
u

/~
cs3

1
5

/F2
0

2
1

/m
en

g
/co

d
e

/th
read

/o
p

en
m

p
-m

.c

http://www.eg.bucknell.edu/~cs315/F2020/meng/code/thread/openmp-m.c

Execution Result

[xmeng@polaris thread]$./openmp-m
I am a parallel region (thread id == 2)
I am a parallel region (thread id == 1)
Number of threads = 4
I am a parallel region (thread id == 0)
I am a parallel region (thread id == 3)
value of v = 4
[xmeng@polaris thread]$

Running the program with 4 threads

Thread 0 printed this line

The last part of the sequential code printed this line

