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Now that we have seen how pthreads work in the 
Linux system, let’s look back at the bigger picture of 
threads and their relation with processes.



Some Common Questions
• Pthread is a specification that meets the POSIX (Portable Operating 

Systems Interface) standard.

• How a thread library is implemented varies and we don’t need to worry 

about it at this level, though we will discuss some high level concepts.

• There are other popular thread libraries, e.g., Windows Threads and Java 

Threads.

• Kernel threads vs user threads.

– A kernel thread is managed by the OS directly, a user thread is managed by a user program (e.g., in a 

library).

– The pthread library we use on the Linux system is a collection of API; each pthread is a user thread.

https://stackoverflow.com/questions/8639150/is-pthread-library-actually-a-user-thread-solution

https://stackoverflow.com/questions/8639150/is-pthread-library-actually-a-user-thread-solution


Processes and Threads
Shared among 
threads

Thread 
independent



Advantages of Threading

• Responsiveness: multiple threads can be executed in 
parallel (in multi-core machines)

• Resource sharing: multiple threads have access to the 
same data, sharing made easier

• Economy: the overhead in creating and managing 
threads is smaller

• Scalability: more processors (or cores), more threads 
running in parallel
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Challenges in Parallel and 
Multithreaded Programming

• Identifying tasks

• Load balance

• Data splitting

• Data dependency

• Testing and debugging
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Multithreading Models
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User threads
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• Managed by a user library
• Runs at user level

Managed directly by the operating 

system, thus called “kernel 
threads”

Kernel threads



Many-to-One

• Many user-level threads mapped to single kernel thread

• One user thread blocking causes all to block

• Multiple threads may not run in parallel on multi-core 
system because only one may be in kernel at a time

• Few systems currently use this model

• Examples:

– Solaris Green Threads

– GNU Portable Threads



One-to-One

• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted 
due to overhead, imagining that your program tries to 
create 100s of threads…

• Examples
– Windows

– Linux



Many-to-Many Model

• Allows many user level threads to be mapped 
to many kernel threads

• Allows the  operating system to create a 
sufficient number of kernel threads

• Windows  with the ThreadFiber package

• Otherwise not very common

https://docs.microsoft.com/en-us/windows/win32/procthread/fibers

https://docs.microsoft.com/en-us/windows/win32/procthread/fibers


Two-level Model

• Similar to M:M, except that it allows a 
user thread to be bound to kernel thread



Shared Memory Model
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• All threads have access to the same global, shared memory

• Threads also have their own private data (how? where?)

• Programmers are responsible for protecting globally shared 

data



Thread Safeness
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Thread Safeness
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Remember this example …
#define  NUM_THREADS  5000   // everything else is the same

[xmeng@polaris thread]$ ./trd-share

main() reporting that all 5000 threads have terminated

v should be 5000, it is 4998

[xmeng@polaris thread]$ 

Who stole the two counts from me?!!



Implicit Threads - OpenMP

http://jakascorner.com/blog/2016/06/omp-for-reduction.html

sum = 0;

for (auto i = 0; i < 100; i++){

sum += a[i]

}

sum = 0;

#pragma omp parallel for shared(sum, a) reduction(+: sum)

for (auto i = 0; i < 100; i++) {

sum += a[i]

}

sumloc_1 = a[0]  + ⋯ + a[33]

sumloc_2 = a[34] + ⋯ + a[66]

sumloc_3 = a[67] + ⋯ + a[99]

sum = sumloc_1 + sumloc_2 + sumloc_3

http://jakascorner.com/blog/2016/06/omp-for-reduction.html


A Simple Example
/* To compile, enter: 
* gcc -fopenmp openmp.c -o openmp

*/
#include <omp.h>
#include <stdio.h>
int main(int argc, char *argv[]){

/* sequential code */
printf(“I am in a sequential area 1\n”);
#pragma omp parallel
{

printf("I am a parallel region\n");
}
/* sequential code */
printf(“I am in a sequential area 2\n”);
return 0;

}

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/openmp.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/thread/openmp.c


Execution Result

[xmeng@polaris thread]$ ./openmp
I am a sequential region1
I am a parallel region
I am a parallel region
I am a parallel region
I am a parallel region
I am a sequential region2
[xmeng@polaris thread]$

Running the program with 4 threads

The number of threads in OpenMP can be set, either through 
the call to omp_set_threads()or through the setting of 
environment variable export OMP_NUM_THREADS=val
The default is 16.



A Example with Shared Data
/* To compile, enter:  gcc -fopenmp openmp-m.c -o oenmp-m */

#include <omp.h>
#include <stdio.h>
int main(int argc, char *argv[]){

/* sequential code */        
int v = 0; int tid; int nthreads;
#pragma omp parallel shared(v, nthreads) private(tid)
{

tid = omp_get_thread_num();
if (tid == 0) {

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
#pragma omp critical (addv)

{
v ++;

}
printf("I am a parallel region (thread id == %d)\n", tid);
}
/* sequential code */        
printf("value of v = %d\n", v);
return 0;

}
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http://www.eg.bucknell.edu/~cs315/F2020/meng/code/thread/openmp-m.c


Execution Result

[xmeng@polaris thread]$ ./openmp-m
I am a parallel region (thread id == 2)
I am a parallel region (thread id == 1)
Number of threads = 4
I am a parallel region (thread id == 0)
I am a parallel region (thread id == 3)
value of v = 4
[xmeng@polaris thread]$

Running the program with 4 threads

Thread 0 printed this line

The last part of the sequential code printed this line


