
CSCI315 – Operating Systems Design
Department of Computer Science

Bucknell University

This set of notes is based on notes from the textbook
authors, as well as L. Felipe Perrone, Joshua Stough,
and other instructors.
Xiannong Meng, Fall 2021.

Ch 6.1-6.3

Process Synchronization Introduction

Two Examples
• Multiple threads increment a shared variable leading to

incorrect results

– http://www.eg.bucknell.edu/~cs315/F2021/meng/cod
e/synch/trd-share.c

• Multiple threads share a string buffer (read/write)
leading to incorrect results (consuming items not in the
order of producing)

– http://www.eg.bucknell.edu/~cs315/F2021/meng/cod
e/synch/consumer-producer-wosynch.c

http://www.eg.bucknell.edu/~cs315/F2021/meng/code/synch/trd-share.c
http://www.eg.bucknell.edu/~cs315/F2021/meng/code/synch/consumer-producer-wosynch.c

Who stole the two counts from me?!!

[xmeng@polaris thread]$./trd-share

main() reporting that all 5000 threads have terminated

v should be 5000, it is 4998

[xmeng@polaris thread]$

Consumer-Producer Problem
Incorrect result …

Process Synchronization

• Processes work together to solve problems.

• They need to coordinate with each other in order to
accomplish a task.

• Without coordination, things can go wrong as we
saw in the last two examples. Many other scenarios
lead to similar problems.

Race Condition

A race condition is where the outcome of the
execution depends on the particular order in
which the threads[note] access the shared data.

We have seen this phenomenon in our thread discussion

[xmeng@polaris thread]$./trd-share

main() reporting that all 5000 threads have terminated

v should be 5000, it is 4998

[xmeng@polaris thread]$

Note: in this context, we will use the term process and thread interchangeably.

The Synchronization Problem

• Concurrent access to shared data may
result in data inconsistency.

• Maintaining data consistency requires
mechanisms to ensure the “orderly”
execution of cooperating processes.

Producer-Consumer
Race Condition

The Producer does:

while (1) {

while (count == BUFFER_SIZE)
; // buffer full, wait

// produce an item and put in buffer at “in”
buffer[in] = make_item();
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Page 256 of textbook, 10th edition

Producer-Consumer
Race Condition

The Consumer does:

while (1) {

while (count == 0)
; // buffer empty, wait

item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;
// consume the item

}

Page 256 of textbook, 10th edition

Consumer-Producer
Race Condition Incorrect result …

Producer-Consumer
Race Condition

• count++ (in producer) could be implemented as
lw t0, 0(s0) # load memory content at s0 to t0

addi t0, t0, 1 # increment t0 by 1
sw t0, 0(s0) # store content in t0 to memory at s0

• count-- (in consumer) could be implemented as
lw t1, 0(s0) # load memory content at s0 to t1

subi t1, t1, 1 # decrement t1 by 1
sw t1, 0(s0) # store content in t1 to memory at s0

• Consider this execution interleaving when count == 5:
Step 0: producer execute lw t0, 0(s0) # t0 == 5
Step 1: producer execute addi t0, t0, 1 # t0 == 6
Step 2: consumer execute lw t1, 0(s0) # t1 == 5
Step 3: consumer execute subi t1, t1, 1 # t1 == 4
Step 4: producer execute sw t0, 0(s0) # count == 6
Step 5: consumer execute sw t1, 0(s0) # count == 4, incorrect!

The Critical-Section Problem

• It turns out that the consumer-producer problem is one
particular problem in a general category of problems
called the critical-section problem:
– A collection of collaborating processes, each of which has a

segment of code (critical section) that accesses some common
data. To ensure the correctness of the result, only one process
can enter its critical section to access the shared data at any
time.

– The critical-section problem is to design a protocol that ensures
the correctness of the result under such a condition.

The Critical-Section Problem
Solution Requirements

1. Mutual Exclusion - If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted. (Assume that each process executes at a
nonzero speed. No assumption concerning relative speed of the N
processes.)

Typical Process Pi

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

OpenMP Code Example
int main(int argc, char *argv[]) {

/* sequential code */

int v = 0;

#pragma omp parallel shared(v)

{

#pragma omp critical (addv)

{

v ++;

}

printf("I am a parallel region\n");

}

/* sequential code */

printf("value of v = %d\n", v);

return 0;

}

How To Synchronize Processes?

• OpenMP provides a nice solution for programmers.

• But how are they implemented? How do we
approach a synchronization problem in general?

• There could be hardware solution to this problem as
well. We are concentrating on software solutions for
now.

Peterson’s Solution
for a 2-process case

int turn;

boolean flag[2];

do {

flag[i] = TRUE; // i 0 or 1

turn = j; // j 0 or 1

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

Shared

variables

turn: status

flag[2]: intension

Peterson’s Solution
Process 0

do {

flag[0] = TRUE;

turn = 1;

while (flag[1] && turn == 1);

critical section

flag[0] = FALSE;

remainder section

} while (TRUE);

Shared

variables

int turn;

boolean flag[2];

turn: status

flag[2]: intension

Peterson’s Solution
Process 1

do {

flag[1] = TRUE;

turn = 0;

while (flag[0] && turn == 0);

critical section

flag[1] = FALSE;

remainder section

} while (TRUE);

Shared

variables

turn: status

flag[2]: intension

int turn;

boolean flag[2];

Limitation to Peterson’s Solution

• Strict order of execution

• Variable updates (turn and flag) could
still be problematic

